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1.	 Objectives of this Guideline

This guideline provides lessons-learned, experiences 
and best practices related to the application of 
ISO 26262 for the development of software. Please 
note that the guidelines given are of general nature 
and do not replace a thorough consideration of the 
project specific development regarding achievement 
of “Functional Safety” considering ISO 26262.

2.	 Overview

This guideline is intended to be maintained and 
extended. The current version addresses the follow-
ing aspects:
•	 Definition of terms used in the context of “Func-

tional Safety” and software development.
•	 Guidance for safety concepts and architectures 

for safety-related software.
•	 Classification and qualification of software tools 

used in the development of embedded software.

3.	 Explanation of Terms

The following explanations include terms used in this 
document. The explanations are intended to ease the 
common understanding.

Term Description

QM software

Software that is not developed according to ISO 26262 ASIL A, to D but still the software is developed according a 
well-defined process (e. g. an ASPICE compliant process). QM software must not be used to realize safety-related 
functionalities and special consideration is needed if QM software is integrated in an ECU that realizes safety-related 
functionalities.

Silent software
“Silent software” is a term used to describe software that does not interfere with other software with respect to mem-
ory access (e. g. range-check of index values, verification of pointer access) under the conditions defined in the Safety 
Manual. “Silent” software does not fulfill specific safety-related functions.

Implicitly safe

“Implicitly safe” is a term used to describe software that is silent software with additional dedicated timing properties 
(e. g. with respect to execution time, deadlocks and robustness with respect to input signals) under the conditions 
defined in the Safety Manual.
“Implicitly safe” software does not fulfill specific safety-related functions.

Safety manual
A Safety Manual describes constraints and required activities for the integration and/or usage of elements that have 
been developed and prequalified acc. ISO 26262 as Safety Element out of Context.

Safe, safety,
explicitly safe

“Safety/safe/explicitly safe software” is a term used to describe software that fulfills specific safety- 
related requirements under the conditions stated in the safety manual.

“Trusted mode”, system
mode, privileged mode,
supervisor mode

CPU mode for executing software with full access to the hardware features of the microcontroller. Software executed 
in this mode poses a higher risk and should be treated as such (e. g. development according to required ASIL includ-
ing the implementation of appropriate safety measures).

Safety-related
functionality

A functionality that realizes safety requirements.

Table 1: Explanations of terms used in this document
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4.	 Software Safety Concepts and Architectures
4.1.	 Introduction

In this section different software safety concepts are 
depicted and some hints are given to decide for the 
appropriate safety concept depending on the condi-
tions in a specific development project.

Often many of the functionalities and properties of 
ECU software are not safety-related, but only a part 
of them. Only those software elements that contrib-
ute to the implementation of safety requirements are 
considered safety-related.

To implement a mix of safety-related and non-safe-
ty-related functionalities there are two fundamental 
design options mentioned in ISO 26262:
•	 Develop a design in which such a mix can coexist. 

This is often called “Mixed ASIL Design” and is 
a typical approach if the portion of safety-related 
functionalities is rather small or third-party or 
QM software needs to be integrated.

or
•	 Develop the complete ECU software in conform-

ance with the “Maximum ASIL” assigned to any of 
the safety-related functions within the ECU. This 
is often called “Maximum ASIL Design” and the 
typical approach if the portion of safety-related 
functionalities is rather large.

Figure 1 depicts different ECU types holding software 
elements with and without related safety require-
ments and illustrates these two design patterns.

Figure 1: Mapping of software safety requirements to ECUs – Source: ZVEI
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Both design options must focus on the same goal: 
To achieve the necessary integrity of the safety func-
tions. The level of integrity expresses the degree of 
trust you can have that a software will provide the 
stated functions and properties as demanded under 
specified conditions.

Necessary integrity can be achieved in two ways: 
One is to prevent that the software contains errors 
which lead to a malfunctioning behavior. Another is 
to include technical measures that are able to detect 
and control such a malfunctioning behavior.

In a “Mixed ASIL Design” the elements do not all 
have the same integrity based on their specific 
development goals. If they are integrated into one 
software without further measures, the integrity of 
the complete software cannot exceed that of the ele-
ment with the lowest integrity, like the weakest link 
of a chain.

To achieve a higher degree of overall integrity one 
must provide evidence that the elements with a lower 
integrity are not able to interfere with the elements 
of the target ASIL which is called “achieving Freedom 
from Interference”. There are two principles to argue 
“Freedom from Interference”:

•	 Detect that an interference has occurred and 
mitigate the effects

•	 Prevent that an interference occurs

Detection and mitigation is sufficient if the resulting 
(degraded) functional behavior of the software can 
still ensure “Functional Safety” (e. g. achieve and 
maintain a safe state).

In a “Maximum ASIL Design” all elements have the 
same integrity. When integrating such elements, 
in principle the complete software has the same 
integrity and does not require an examination for 
Freedom from Interference. Nevertheless, the safety 
analysis at software architectural level may reveal 
weaknesses which have to be addressed (e. g. by 
technical measures) in order to achieve confidence 
in “Functional Safety”.

The following sections describe the two approaches 
in further detail. Since software architectures accord-
ing to AUTOSAR are more and more used it is men-
tioned which contribution AUTOSAR features could 
provide.

A “Mixed ASIL Design” targets the development of 
software elements according to QM or a lower ASIL 
without jeopardizing the integrity of the entire soft-
ware system, which may have a higher ASIL. It may 
also enable the containment of errors in a partition.

This concept requires a suitable software design on 
application level, i. e. functional blocks must be 
coherent and unwanted interlinking between func-
tional blocks (e. g. via global variables) should be 
avoided. It also requires a safety mechanism realiz-
ing the freedom from interference on hardware and 
software level which ensures that a software element 
with a lower ASIL cannot interfere with a software 
element with a higher ASIL. This mechanism must be 
able to either prevent that a malfunction of one ele-
ment leads to the malfunction of another element, 
or it must be able to detect such interference and to 
mitigate the effects in time. This safety mechanism 
has to be developed according to the “Maximum 
ASIL” of the software safety requirements realized on 
this ECU.

ISO 26262 mentions different aspects of possible 
interferences:
1.	Memory, which includes the RAM as well as the 

CPU registers
2.	Timing and executions, which refers to blocking 

of execution, deadlocks and livelocks or the 
incorrect allocation of execution time in general

3.	Communication, summarizing all possible errors 
that could occur in the communication between 
software elements both within the ECU and across 
ECU boundaries.

The separation between “QM or lower ASIL” and 
“Maximum ASIL” elements provides the following 
benefits:
•	 Development methods for “Maximum ASIL” only 

have to be applied for safety-related software 
elements (which includes the elements ensuring 
the freedom from interference). This allows the 
reuse of existing QM software (e. g. third-party 
software), as long as it is not safety-related.

•	 Propagation of failures between software 

4.2	 “Mixed ASIL Design”
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4.3	 “Maximum ASIL Design”

elements of the same ASIL can be prevented 
or detected, although it is not mandated by 
Freedom from Interference. However this also 
supports the separation of safety-related parts 
with high availability requirements from other 
parts in fail-operational architectures.

•	 Some failures caused by hardware defects can 
also be prevented or detected (e. g. timing super-
vision will detect a faulty clock source).

On the other hand, the following disadvantages have 
to be taken into account when applying the “Mixed 
ASIL Design”:
•	 The separation adds additional complexity to the 

software design. Especially in legacy software 
safety-related and non-safety-related functional 
blocks are often tightly coupled, which requires 
additional effort for a software architecture 
redesign.

•	 The safety mechanism to ensure “Freedom 
from interference” may result in a performance 
penalty during runtime (e. g. for reprogramming 
the MPU and context switching). To reduce these 
penalties to a minimum, the interaction between 
the software elements that are separated by 
freedom from interference mechanisms needs to 
be as low as possible.

The “Maximum ASIL Design” has its advantages in 
use cases where a high share of the software provides 
safety-related functionality. In this approach, both 
the safety-related and the non-safety-related func-
tions follow the development process of the high-
est ASIL in the system. For the non-safety-related 
software elements, the coexistence argumentation 
follows a process argumentation: if those software 
elements are developed in the same stringent way 
applying the same process methods as the safety- 
related software elements, the coexistence of the 
elements is possible without further technical sep-
aration measures. The only difference between the 
non-safety-related and the safety-related software 
elements is then the necessary safety analysis for the 
latter.

Compared to the “Mixed ASIL Design” this approach 
gives the following benefits:
•	 No additional complexity for development of a 

partitioning concept.
•	 No performance penalty due to safety mecha-

nisms ensuring Freedom from Interference.
•	 Improved quality also for the non-safety-related 

software components which leads to a higher 
availability of the system.

On the other hand the following disadvantages have 
to be considered:
•	 The development effort increases since all soft-

ware elements have to be developed according to 
the highest ASIL. For the non-safety-related part 
an additional safety requirement is then applied, 
which requires the non-interference (“silence”) 
with the safety-related part.

•	 As ASIL development does not mean that the 
software is error free, errors in these parts are not 
prevented to propagate by design.

•	 Inclusion of third-party software (e. g. “black-
box” software) is more difficult, as the develop-
ment process of these modules is often unknown 
or cannot be influenced.
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The following paragraphs contain suggested protec-
tion mechanisms for different kinds of fault classes 
in the data and control flow domain, which includes 
faults listed in annex D of ISO 26262 part 6. Data 
faults are either related to global data, to data resid-
ing on the execution stack, or to data received by QM 
SWCs. Additionally, hardware register faults consti-
tute a special kind of data faults. Control flow faults 
are either related to timing faults or to interrupt 
faults. Faults due to illegal references can have an 
effect on either the data or the control flow domain.

Please note: The following list includes mecha-
nisms sufficient for typical ASIL A or B projects but 
it also shows additional mechanisms that can also be 
used for higher ASILs. Especially those mechanisms 
required for higher ASILs are typically supported by 
AUTOSAR Basic Software features.

Fault class: “Global Data Faults”
There are several options to address this fault class:
1.	By partitioning the available RAM memory space 

in QM and ASIL parts and cyclically verifying a 
memory marker in between (initialized to a spe-
cific pattern), the probability to detect a relevant 
buffer overflow originating in QM software is 
increased.

2.	To protect safety-related data without using an 
MPU, double inverse storage concepts can be 
employed to detect accidental overwrites by QM 
software by comparing the original variables 
to bit-inverse shadow copies upon reading or 
cyclically (as long as the fault tolerance time is 
considered). If a larger set of data is not written 
frequently, memory-efficient checksums can be 
used to detect accidental modifications of data 
parts. This protects against QM data pointer cor-
ruptions and QM buffer overflows, both resulting 
in writes to ASIL data.

3.	To protect against accidental overwrites the 
CPU’s memory protection unit (MPU) can be used 
together with an allocation of tasks to separate 
partitions. In AUTOSAR, it is the responsibility 
of the Operating System to handle the MPU and 
thereby to ensure a proper separation between 
the entities. This is typically required for ASIL C 
and D but can also be useful or even required for 
lower ASILs.

Fault class: “Stack Faults”
There are several options to address this fault class:
1.	By using a stack range check that checks whether 

the current stack pointer is in range of the 
allocated stack memory, the probability to detect 
a stack overflow or underflow by QM software 
modifying the stack pointer can be increased. 
Such a stack check can be implemented cyclically 

or – in most cases even better – in context of a 
task switch.

2.	Additionally, stack overflows and underflows can 
be detected by checking memory markers (ini-
tialized to a specific pattern) placed above and 
below the allocated stack memory, which detects 
a subset of stack faults. This feature is also part of 
the AUTOSAR Operating System. Please be aware 
that this mechanism cannot detect stack over-
flows that do not overwrite the memory markers.

3.	The stack can also be protected by a hardware 
MPU which actually prevents all stack faults. This 
is typically required for ASIL C and D but can also 
be useful or even required for lower ASILs.

Fault class: “Less Reliable QM Data Quality”
If data that is relevant to safety-related ASIL calcu-
lations is routed through QM software parts (e. g., 
drivers or communication stacks that process hard-
ware input) that could corrupt data, there are several 
options to address this:
1.	A single sporadic fault can be detected via a 

plausibility check. Such a plausibility check can 
use either values from other sources or previous 
values from the same source as an additional 
input. For instance, receiving a speed value of 
0 km/h after having received one of 100 km/h 
in the previous CAN message 20 ms before is 
not plausible. Please note that the detection 
probability depends strongly on the assumed 
fault model.

2.	Alternatively and with a higher detection prob-
ability, end to end protection checksums and 
signal alive checks can be used. The AUTOSAR 
end-to-end protection modules have been speci-
fied for this purpose.

Fault class: “Hardware Register Faults”
To protect against QM software parts accidentally 
modifying hardware register state that is safety-re-
lated, there are several options:
1.	Some microcontrollers offer locks for selected 

configuration registers or configurable write-once 
semantics, which should be used.

2.	A cyclic check of the current hardware state 
against the expected state as held in software can 
be performed to detect faults as long as the fault 
tolerance time is considered.

3.	Use a pro-active recovery mechanism that 
periodically rewrites the expected register states 
(assuming single bit flips as fault model).

4.	The strongest mechanism is the protection of 
memory mapped registers via the MPU. Some 
CPUs also provide a Peripheral Protection Unit 
for this task. This is typically required for ASIL C 
and D but can also be useful or even required for 
lower ASILs.

4.4	 Mechanisms to realize freedom from interference
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Fault class: “Timing and Execution Faults”
To protect against QM software significantly delaying 
or even blocking ASIL software execution, there are 
several options:
1.	Hardware or software watchdogs can be used. 

These should either be configured in a window 
mode, or they should regularly be triggered at 
the end of its deadline to detect delays as early 
as possible.

2.	Depending on the scheduling scheme employed 
in the basic software operating system, overflows 
of time slices or task overruns can be detected. 
This is also a feature of the AUTOSAR Operating 
System.

3.	The strongest mechanism that also detects fault 
in the program logic is the supervision of the pro-
gram flow in combination with time stamps. This 
is also a feature of the AUTOSAR Watchdog Stack 
and is typically needed only for ASIL C and D.

Fault Class: “Interrupt Faults”
To protect against the fault that global interrupts or 
ASIL interrupt sources are permanently disabled by 
QM software parts, both properties can be checked 
cyclically to be enabled in an assertion.

To protect against QM Interrupt Service Routines 
executing at higher rate than expected, which will 
delay or even block the execution of ASIL ISRs, two 
measures can be taken:

1.	If possible from the real-time scheduling point of 
view, ASIL ISRs should be given a higher priority 
compared to QM ISRs.

2.	As a monitoring measure, the arrival rate of 
QM ISRs can be monitored to be in range of the 
expected rate. This is also a feature of the AUTO-
SAR Operating System.

Fault class: “Illegal References”
By referencing ASIL symbols, QM software could 
include code that writes to protected ASIL data or 
executes protected ASIL functions. This misbehavior 
can be protected against by partitioning the software 
in the design phase. By explicitly denoting ASIL data 
and function declarations that are legal to be ref-
erenced from within QM software parts in an ASIL/
QM interface header, this design by contract can be 
proven in an automated way. An example approach 
would be to implement the interface header in a 
dummy module and link it to the QM software parts. 
The linker will then report undefined references 
from QM to ASIL software parts, which states an 
illegal interference. This proof is especially impor-
tant when integrating QM third-party code, and the 
explicit interface can additionally be used to inte-
grate plausibility checks when transitioning from/to 
QM software (see also fault class “less reliable QM 
data quality”).

5.	 Confidence in the Use of Software Tools
5.1.	Motivation

Software tools play a major role in the implemen-
tation of processes and methods used during the 
development of safety-related systems, software and 
hardware.

Using tools can be beneficial because they enable, 
support or automate safety-related development 
activities (e. g. development and management of 
requirements or architectural designs, code gener-
ation, analyses, testing or configuration manage-
ment).

However, in case of a malfunctioning behavior such 
tools may also have adverse effects on the results 
of tool-supported development activities and thus on 
the “Functional Safety” achieved in the final product 
or its elements including software.

ISO 26262 provides an approach to achieve confi-
dence that using software tools does not jeopardize 
“Functional Safety”. This approach contains:
•	 Determination of single tools or tool chains which 

are relevant for safety-related activities and 
identification of the used functionalities and their 
purpose during development.

•	 An analysis to determine the required confidence 
for each relevant software tool, based on the risks 
related to the used functionalities and its role in 
the development process (“classification“).

•	 Measures to qualify a software tool, if the classifi-
cation indicates that this additional risk reduction 
is needed.
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This approach can be supported by the tool ven-
dor, e. g. by providing information such as generic 
analyses based on intended application use cases or 
test cases and test suites for tool qualification. The 
responsibility for using the tool in a suitable way 
remains with the user.

The following sections describe this approach in fur-
ther detail.

5.2.	Analysis and classification of software tools

The risk related to the tool functionalities used for a 
specific purpose during development is determined 
by the tool´s impact and the possibility to detect mal-
functions yielding the aggregated tool confidence 
level (TCL):

1.	The tool impact (TI) expresses the possibility that 
a malfunction of a particular software tool can 
introduce or fail to detect errors in a safety-re-
lated item or element being developed.
•	 TI1: Shall be selected when there is an argu-

ment that there is no such possibility
•	 TI2: Shall be selected in all other cases

2.	The tool error detection (TD) expresses the con-
fidence that due to tool-internal or tool-external 
measures (e. g. subsequent process activities) 
relevant tool malfunctions producing erroneous 
output can be prevented or detected.
•	 TD1: High degree of confidence (that a 

malfunction and its corresponding erroneous 
output will be prevented or detected)

•	 TD2, TD3: Medium or low degree of confidence

The classification depends on the usage of the tool 
(e. g. used functionalities) as part of the complete 
development process.

Figure 2 shows the approach and table 1 gives some 
examples. Please note that the specific workflow 
embedding the tool usage has to be considered.

Figure 2: Classification and qualification of software tools acc. ISO 26262 – Source: ZVEI
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Tool Use case Failure 
mode

TI Measures to detect 
or prevent mal-
functioning of tool

TD Rationale TCL Qualifi-
cation
needed

C-Code generator Generate C-Code 
from model

Incorrect transla-
tion from model 
to code

TI2 None TD3 Errors are not 
detected if no 
systematic tests are 
performed.

TCL3 Yes (TCL3)

Full verification of code 
with required coverage by 
tests, reviews and static 
code analysis

TD1 Errors are detected 
by verification.

TCL1 No

Full verification of code 
with code generator spe-
cific checker tool

TD1 Errors are detected 
by checker tool.

TCL1 No

Use redundant code gener-
ator and compare results

TD1 Failure of one tools 
will be detected by 
the other tool. Equal 
failure of both tools 
is unlikely

TCL1 No

Static code analy-
sis tool

Static code 
analysis

False negatives 
with respect to 
specified error 
class (e. g. array 
out of bounds for 
a bounds check-
ing tool)

TI2 None TD3 Other tests do not 
focus on this error 
class

TCL3 Yes (TCL3)

Configuration 
management tool

Checkout specific 
artifact version

Checkout of 
wrong artifact 
version

TI2 Artifact checksum verified 
against external database

TD1 Corrupted data and 
wrong artifact ver-
sion will be detected 
externally

TCL1 No

Artifact was 
corrupted

TI2 Artifact checksum verified 
against tool internal 
database

TD1 Corrupted data 
will be detected 
internally

TCL1 No

Table 2: Examples for tool classification
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The resulting TCL may be reduced by improving the 
detection or avoidance measures (iterative tool anal-
ysis). As a consequence alterations in the process 
(e. g. removal of a redundant tool in the tool chain) 
may invalidate the TCL argumentation.

Example: If an analysis shows that for the tool and its 
intended usage a TCL1 cannot be argued, there are 
at least two options:
•	 Lowering the TCL by improving the TD introducing 

additional detection or prevention measures into 
the development process (e. g. checking tool 
outputs) or into the tool itself.

•	 Performing a qualification of the tool according 
to the TCL for the target ASIL if lowering the TCL is 
not feasible or not efficient.

The quality of the documentation and the granular-
ity of the tool analysis require an adequate level of 
detail so that the resulting TCL is comprehensible 
and the resulting TCL can be justified (Neither a very 
detailed investigation nor a rough general view is 
helpful).

For TCL1 classified software tools no qualification 
measures are required at all.

For TCL2 and TCL3, tool qualification measures pro-
vide evidence that justifies confidence in a software 
tool for its intended use cases in the development 
environment. The following measures are applicable 
depending on the TCL and target ASIL:
•	 Increased confidence from use.
•	 Evidence for a structured tool development 

process.
•	 Tool development in compliance with a safety 

standard.
•	 Validation of the software tool.

5.3	 Qualification of software tools
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