
Best Practice Guideline

Software Release

Platform Automotive –
Electronics, Infrastructure & Software

2

Impressum
Best Practice Guideline
Software Release

Published by:
ZVEI
German Electrical and Electronic
Manufacturers’ Association
Platform Automotive –
Electronics, Infrastructure & Software
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-276
Fax: +49 69 6302-407
E-mail: zvei-be@zvei.org
www.zvei.org

Responsible: Dr. Stefan Gutschling, ZVEI

Authors:
Gunther Bauer, ZF Friedrichshafen
Dr. Stefan Bunzel, Continental
Thorsten Geiselhart, Marquardt
Dr. Günther Heling, Vector Informatik
Markus Langhirt, Brose Fahrzeugteile
Henning Möller, NXP Semiconductors Germany

May 2015
1st Revision April 2016

While every care has been taken to ensure the accuracy of this doc-
ument, ZVEI assumes no liability for the content. All rights reserved.
This applies in particular to the storage, reproduction, distribution
and translation of this publication.

3

Table of Contents

1. Objectives of This Guideline 4

2. Release Process 5

2.1. Software release 5

2.2. Process from the point of view of the supplier 5

2.3. Process from the point of view of the OEM 7

2.4. Impact of external software 10

2.5. Impact of reuse of standardized software 11

3. Documentation and Artefacts 12

3.1. Overview document 12

3.2. Detailed release documentation 12

 3.2.1. Delivery scope 12

 3.2.2. System description 13

 3.2.3. Change log 13

 3.2.4. Function list 14

	 3.2.5.	Configuration	parameters	 14

	 3.2.6.	Verification	results	 14

 3.2.7. Metrics 15

 3.2.8. Releasing Software 16

3.3. Proposal for a basic release documentation 17

4. Principles for Use in Practice 18

5. Definitions and Terms 20

6. Participating Companies 23

Appendix A 24

Appendix B 25

Appendix C 26

4

1. Objectives of This Guideline

The automotive industry is becoming more and
more focused on the necessity of a robust and
efficient	software	development	process.	This	 is	
due	 to	 the	 increasing	 significance	 of	 software	
based functions in vehicles, the increasing
interconnection of control units and the rapidly
growing complexity. More and more require-
ments have to be implemented in ever shorter
time spans. The growing complexity can only
be managed when the development process in
the network of vehicle manufacturers, suppliers
and service providers is coordinated (incl. clear
definition	of	tasks	and	responsibilities)

In previous years, the emphasis was on the
improvement of company internal processes
(such as in the implementation of automotive
SPICE	or	CMMI).	The	interfaces	between	vehicle	
manufacturers and the suppliers were not con-
sidered in detail. The lack of common standards
right at the “software release” interface leads
to a considerable coordination effort and possi-
ble misunderstandings. The optimisation of the
software release process is of common interest
for all participants – it can make an important
contribution ensuring the maturity of the soft-
ware development process.

This guideline summarises experiences and best
practices for the essential aspects. This creates
awareness of where early bilateral cooperation
is helpful, even if clear cross-company recom-
mendations are not possible everywhere. This
guideline deals with both parties, contractor
and	purchaser	(e.	g.	OEM	and	supplier).	A	com-
mon conception is very important to handle
both viewpoints, not just for new business rela-
tionships but particularly in this case.

The objective is to present suggestions for an
optimisation of the interface (communication
and	documentation)	between	the	vehicle	man-
ufacturer and the supplier. This is an essential
pre-requisite for meeting new challenges in
the	field	of	software	development	(driver	assis-
tance systems, service focused communication,
Car2X,	etc.)	more	efficiently.	The	definition	of	
the artefacts belonging to a software release is
at the centre of this. The primary focus is an
equal understanding of the contents with less
emphasis being placed on standardised data
formats.

5

2.1. Software release
Software release means that the software is
cleared to be passed on to the user or customer.
With the release of software, the supplier gives
a statement about the implemented functions
and properties and hands them over to the cus-
tomer	 within	 the	 defined	 framework	 for	 use.	
Release of the software typically results in the
fulfilment	of	contractual	elements	of	the	busi-
ness relationship between the customer and the
supplier. On the other hand software is released
as an item, which is delivered at the end of the
development process.

Software development for embedded control
units can also be considered in a further con-
text. To build up the complete control system,
software components, which may be delivered
from various suppliers, are integrated on indi-
vidual	control	units	in	a	first	step.	In	a	second	
step, all control units are integrated to a com-
plete network in the vehicle. From the vehicle
manufacturer’s point of view, this applies right
up to distributed functions which involve the
complete vehicle. Automotive software devel-
opment is part of a system which involves many
participants. It has to consider disciplines such
as electrics, electronics, mechanics and inter-
connection as boundary conditions. For this
purpose,	 a	 process	 definition	 with	 many	 syn-
chronisation points has become established in
the automotive industry for which a software
release timeline is required.

In linguistic interaction – and also subse-
quently in these guidelines – the term release
has different meanings. First of all it refers to
the result of the release process, meaning the
artefact to be released and also the associated
documents and metrics. We will call it “release
item” in the following. The process which
leads to the release and the release item is the
release process. This guideline casts light on the
release process from various perspectives in the
sections which follow. These perspectives are
from the point of view of the supplier and that
of the vehicle manufacturer. The release item is
to be regarded generically as a component in
this release process. This may involve a software
component – from the point of view of the sup-
plier. It may, however, also involve a group of

software components which are to be released
jointly, such as the software for a complete con-
trol unit. From the point of view of the OEM, a
“component” often also includes hardware and
then refers to a control unit to be released for
example.

2.2. Process from the point of view of the
supplier
The process from the point of view of the sup-
plier is broken down into various development
cycles over various sub-systems (mechanics,
hardware,	 software).	They	 can	progress	at	dif-
ferent speeds and they are synchronised with
milestones	 for	 the	 complete	 system	 (see	 fig-
ure	1).	The	development	methods	of	 the	 indi-
vidual subsystems can be independent of one
another (e. g. V-model for the hardware and
Agile	methods	for	the	software	development).
The software release process of the supplier
contains the following steps:
•	Functional	extensions,	modifications	and	bug	

fixes	are	integrated	into	the	software	compo-
nents according to the release plan.

•	The	verified	components	are	 integrated	 into	
the complete software.

•	The	integrated	software	is	verified	as	planned	
(e. g. based on the results of impact analyses
for	modifications)

•	The integrated software may possibly be
released together with a calibration dataset
(see	figure	2).

•	The complete software may be delivered
together with other system components such
as hardware if necessary. The scope of the
software	 release	 must	 be	 defined	 and	 vali-
dated prior to delivery.

•	The complete software and calibration data-
set together with the supporting documenta-
tion represent the software release item from
the point of view of the supplier.

2. Release Process

6

Figure	1:	Process:	Synchronization	of	the	sub	system	development	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

Fine calibration
release

Testing
coordination

Change request Component Complete software Basic dataset
modification related software test

Integrated software
release

Coarse calibration
release

Release of the
application status
with neutral data

Release of the
basic dataset

Change request

Change request

Component

Release of
the sources

Release of the
component

Basic dataset
modification related software test

Basic dataset
modification related software test

Change request

Change request

Change request

External component

Figure	2:	Sequence	change	request/bug	fix	(picture	source:	ZF	Friedrichshafen)

Product:
I-Level

Mechanics:
Long Cycles

Hardware:
Medium Cycles

Software:
Short Cycles

Project
Preparation

Concept
Phase

Product and Process
Development

Production
Readiness and

Validation

Ramp up and Series
ProductionGate Gate Gate Gate Gate

I2.x I2.x I3.x I3.x I4.x

I1 I2I1.5 I2.5 I3 I3.5 I4 I5

7

2.3. Process from the point of view of the
OEM
The	 OEM	 expects	 verified	 software	 for	 the	
required maturity level from the supplier. From
the point of view of the OEM, the software is
part of the control unit and thus part of a com-
ponent. The OEM tests this component in-house
in various steps. Component tests, subsystem
tests and system tests are carried out. The com-
ponents	(control	units)	are	brought	closer	and	
closer to the complete vehicle and tested (see
figure	3)	in	the	various	validation	stages.

In component tests, the component is tested
intrinsically,	for	functional	capability	and	flash	
capability for example. Subsystem tests validate
the interaction between the component and the
direct communication partners. The freedom
from side effects and the functionality in the
vehicle are tested in the complete system. If
errors occur during a test, these are fed back
to	the	component	developer	(supplier)	for	bug	
fixing	in	subsequent	releases	(see	figure	4).

Complete vehicle
test & validation

Subsystem
test & validation

Component test

Component test

Component test

Component test

Component test

Component test

Component test

Component test

Release process

Release

Subsystem
test & validation

Subsystem
test & validation

Release item

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

ConfigurationSupplier
Component

Figure	3:	Release	process	from	the	point	of	view	of	the	OEM	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

"System Release"

Verification

Integration

Implementation

Design
Analysis / specification

Requirements /
Bugfix req.

Release

Component:
ECU / SW

incidents

Integration

Config freeze

Defect analysis

Verification

Subsystem Report

delivery

Integration

Config freeze

Defect analysis

Verification
System

Report

incidents

"delivery"
& report

Principle of the
different integration
levels

Release

Figure	4:	Principle	of	the	different	integration	levels	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

8

Release process from the point of view of
the OEM – time sequence
The integration of software into the system con-
sists of three different integration stages. The
first	stage	is	the	integration	on	the	component	
level, and then the integrations at the subsys-
tem and system level are performed. Testing
can be started consecutively but run in parallel.
Once the quick checks of an integration stage
have been completed successfully, the next
test stage can be started. Additional deliveries
of software are only permitted for show stop-
pers. The system freeze is done at a previously
defined	point	 in	time.	From	this	point	 in	time	
onwards, no additional deliveries are permitted
and the concluding tests are carried out (see
figure	5).

Release process from the point of view of
the OEM – Theory
Integration	 stages	 with	 defined	 functional	
extensions are planned by the OEM. At the start
of the development, the intervals are longer,
between two and four months. Shortly before
SOP, the functional extensions are no longer as
complex and come at intervals of 2 to 6 weeks
(see	figure	6).

Release process from the point of view of
the OEM – Reality
Bug	fix	loops	are	pushed	between	the	integra-
tion	 stages	 through	 unplanned	 bug	 fix	meas-
ures. This can be traced back to the fact that
bug	fixes	are	delivered	additionally,	regardless	
of	 the	 planned	 timeline.	 Bug	 fixes	 and	 func-
tional extensions are often not separated in
practice.

Capacities for further development and vali-
dation may be factored in for these unplanned
bug	fix	loops.	Unplanned	loops	may	delay	the	
final	 software	 release.	At	 the	 same	 time	 there	
is a probability that the comprehensibility and
transparency of the actions carried out, will suf-
fer due to the loops which are slotted in (see
figure	7).

Release process from the point of view of
the OEM – Best practice
In reality errors are to be expected at every inte-
gration	 stage.	 Therefore	 bug	 fix	 loops	 should	
be planned right from the start. This ensures a
higher quality and transparency in the software
development process. The same amount of time
should	 be	 planned	 for	 the	 additional	 bug	 fix	
loops	 for	 each	 iteration	 (functional	 extension)	
(see	figure	8).

SWL

SR

Additional delivery for
show stopper

Additional delivery for
show stopper

t

KF

SF1 SF2
System

Subsystem

Component

Key:
SWL
KF
SF1
SF2
SR
QC

Software delivery
Freeze of components
System freeze 1
System freeze 2
System release
Quick check

QC

QC

“System Release”

Function tests

System function test with focus on the complete
system, side effects and characteristic features

Component test

Release

Release

Release

Figure	5:	Release	process:	temporal	sequence	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

9

Figure	6:	Release	process	from	the	point	of	view	of	the	OEM:	Theory	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

Figure	7:	Release	process	from	the	point	of	view	of	the	OEM:	Reality	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

Figure	8:	Release	process	from	the	point	of	view	of	the	OEM:	Best	practice	(picture	source:	ESG	Elektroniksystem-	und	Logistik)

Functional extension

Functional extension

Functional extension

Functional extension

Functional extension

Functional extension

Bugfix

Bugfix

Functional extension

Functional extension

Functional extension Bugfix

Bugfix

10

2.4. Impact of externally developed soft-
ware
Automotive software releases increasingly con-
tain software from multiple suppliers, even
from a cascade of suppliers. This extends the
classic relationship between the OEM as cus-
tomer and Tier-1 as supplier in several aspects.
On the one hand, a supplier has to assume the
perspective of an OEM, when he integrates soft-
ware from a Tier-2 supplier into his own com-
ponent. On the other hand, an OEM also has
to assume the supplier perspective, when he
provides software that a supplier integrates into
a software package or into hardware. For the
software release, there is an important differ-
ence whether the integration of external soft-
ware is ordered by the customer or if it is a free
decision of the supplier. The responsibility for
releasing such external software parts should be
clarified	between	customer	and	supplier	before	
the	first	delivery.
In a cascading sequence of software suppli-
ers, ideally the software requirements related
to quality, maturity, development processes,
timing of delivery should be forwarded to each
supplier on each level. In practice, this forward-
ing is limited. For example:
•	Commercial-off-the-shelf (COTS) software

components, e. g. AUTOSAR basic software
For the most part, COTS software has to be
integrated as is. Quality assessments at
the supplier may not be possible. Software
changes	can	be	difficult	with	regard	to	con-
tent, timing, or even in general. Desired
release documentation and artefacts (cf.
chapter	3)	may	not	be	provided	by	the	sup-
plier in a format and with the content that
can easily be integrated into the overall doc-
umentation of the Tier-1 supplier. In order to
address these uncertainties and to mitigate
corresponding risks the integrator of such
software has to transform the information of
the COTS provider or even has to add appro-
priate quality assurance measures.

•	Open source software
Although for open source software the source
code is fully transparent to an integrator, the
implications are quite similar and even more
likely than with COTS software. Open source
software is often maintained by a community,
so that the availability of any needed updates
is not assured. Even a reliable issue report-
ing is often not guaranteed. Additionally, an
assessment of the development process of an
open source component usually is not feasi-
ble.	Such	implications	should	be	clarified	with	
the customer, even if the customer requested
the usage of this open source component and
even if it is the OEM. A very important issue is
the license type of open source software. If it
is	a	strong	copyleft	license	(GPL)	for	example,	
all code has to be shared. Due to this reason,
open source license information is an impor-
tant part of the release notes.

•	Proprietary software (e. g. functional
software from OEM)
Such software often contains innovative func-
tions	 and	 thus	 is	 linked	 to	 specific	 intellec-
tual property. To protect this, an integrator
does not often have transparent insight into
the source code, e. g. if he is requested to
integrate pure object code. In that case, the
capability of the integrator and consequently
his responsibility is limited to the integra-
tion purpose. Depending on the scope of the
integrated software and its functionalities,
the functional responsibility stays with the
supplier of the component. The distribution
of these responsibilities should be clearly
defined	 in	 the	 contractual	 relationship	
between customer and supplier. In practice,
this is particularly important for an integra-
tor if an OEM assumes the additional role of
a software supplier, beneath the role of the
top-level	awarding	authority	(customer).

11

2.5.	 Impact	of	configurable	software
Configurable	software	is	a	key	principle	to	real-
ise ever growing software content with reason-
able effort and quality or to enable reuse. But
configuration	 of	 software	 brings	 along	 some	
drawbacks that have to be addressed in the con-
text of releasing and providing software.

One	 example	 is	 AUTOSAR	 basic	 software	 with	
thousands	 of	 parameters	 including	 configura-
tion	parameters	that	significantly	influence	the	
behaviour of the software. A similar case is a
platform software of a supplier, which is devel-
oped to be used in many projects for different
OEMs.
Differentiate:
•	Configuration	by	supplier

Part	 of	 the	 configuration	 is	 done	 by	 the	
supplier before delivering the software.
This	 restricts	 the	 configuration	 freedom	 for	
the integrator/customer – we could call it
“pre-configuration”.

•	Configuration	by	integrator
Part	of	the	configuration	is	done	by	the	inte-
grator/customer	(OEM	who	integrates	an	ECU	
into a vehicle variant or Tier-1 who integrates
software	components	into	an	ECU).

Configuration	 leads	 to	 functional	variants	and	
the main challenge is to adequately test the
variants, because testing of all possible variants
may not be possible with a reasonable effort.
Different strategies can be used to meet this
challenge that are not discussed here. Regard-
ing software releases at the interface of differ-
ent organizations, maximal transparency is the
major goal. This will be dealt with in chapter 3.

12

This chapter provides a description of support-
ing documents accompanying the delivery of a
release item.

3.1. Overview document
Practice shows that an overview document pro-
vides the best access to release documentation
for the customer. The following aspects are
summarised in this document:
•	A short description of the release item, pur-

pose of use (construction phase, test run,
intermediate	 release	 ...).	 Using	 a	 clearly	
structured nomenclature in the release desig-
nation enables the distinction between main
releases	and	bug	fix	releases.	In	addition	it	is	
useful to state in the nomenclature, whether
the software has interface compatibility with
its predecessor or not.

•	Overview of the documents delivered, over-
view of the documentation.

•	Project schedule with reference to the current
phase	in	the	project	(A,	B,	C	sample)

•	Short description of the agreed standard
timeline or the process model for a release
(see	figure	9).

3.2. Detailed release documentation

3.2.1. Delivery scope
This document supplies a comprehensive over-
view of the software components or the control
units. This includes an overview of variants e. g.
in the form of a matrix, which contains all the
necessary information for the integration of the
component. The 3rd party software components
contained in this delivery also have to be listed,
independent of whether they are OEM standard
software, open source software, or any kind of
proprietary software.

The information concerning software version,
configuration	 files,	 flash	 bootloader,	 memory	
data	 (RAM/ROM),	 interface	 description,	 HW	
etc. denoting a software release item must be
stated clearly and in detail here. If required,
parameter sets and diagnosis data inputs are
also described.

Furthermore it is reasonable to describe the
exact data of the “build environment” used,
for instance compiler versions. In Table 1, the
matrix description of the B1 sample stage of
a control unit is given as an example. Similar
presentations can also be used for pure soft-
ware deliveries. In particular with 3rd party
software, it is important to also mention the
license	(see	Table	1).

3. Documentation and Artefacts

Figure	9:	Example	standard	procedure	software	release	(picture	source:	ZF	Friedrichshafen)

Test OEM

Network description n Release n-1 Network description n+1 Release n

No of weeks before delivery to OEM
-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Preliminary freeze
all requirements known

Freeze
all requirements discussed

Joint clearance
OEM/supplier

Ability to drive status to OEM

Delivery of the components

Basic functionality
approved to OEM

SW test vehicleCalibration

Programming / integration / test
SW test HIL

13

Sample status Variant Tier-1
Part no.

OEM LU no.
(delivery scope)

OEM ZB no.
(assembly)

B1

1. Flexray single XY

2. Flexray x4 XY

3. Flexray x8 XY

Identification

SW unique	identification	for	delivered	software	
version (e. g. software part number)

HW unique	identification	for	delivered	E/E	
hardware	version	(e.	g.	E/E	hardware	part	
number)

MECH unique	identification	for	delivered	mechanic	
hardware version (e. g. number and index of
drawing)

DBC	file	OEM ...

ECU	file	name ...

Standard SW package
OEM

...

Flash bootloader – status ...

SW article code Extended SW article code

...

Table 1 : Example of release information for a control unit:

3.2.2. Subsystem description
In	addition	 to	 the	unique	 identification	of	 the	
release item in the delivery scope, a clear ref-
erence to the subsystem or control unit level
is added for a software release item. This is
especially helpful for the customer if he wishes
to check functionalities on a release item and
wishes to have the corresponding framework
conditions available quickly.

The following information is part of the subsys-
tem description for example:
•	Circuit diagram of the control unit
•	 Interface description of the control unit or

subsystem
•	Block wiring diagram
•	Connector description

This important block of release documentation
can frequently be transferred from one release
to the next release. Information on the compat-
ibility of the software release item to various
hardware states must also be documented for
changes in the system or control units HW.

3.2.3. Change log
The task of the change log is to give the cus-
tomer	 an	overview	of	 the	modifications	 of	 the	
release item. A central element is a listing of the
software	changes	and	bug	fixes	with	reference	to	
the previous release item. The changes will ide-
ally	be	exported	from	the	workflow	management	
system in order to avoid consistency problems
of software and documentation. It is sensible
to reference the document “Delivery scope” in
order to document the compatibility of hard-
ware, software and tools clearly.

14

It is useful to make a distinction between new
or	modified	requirements	and	bug	fixes	which	
are implemented. Tables with the following col-
umns as categories are commonly used:
•	Consecutive number
•	Unique	supplier	change	ID	(reference	to	sup-

plier‘s	change	management	system)
•	Headline of the change
•	Change	type	(requirement	or	bug	fix)
•	Unique	 customer	 change	 ID	 (reference	 to	

requirements or problem management sys-
tem	of	the	customer)

3.2.4. Function list
The functions to be implemented for a release
are	 specified	 during	 release	 planning	 and	
stated in the function list. They are referenced
to the relevant requirements documents. Fur-
ther important information is whether the
planned function was implemented completely.
If it was only implemented in part, a statement
of the resulting limitations is added. If not all
the	variants	that	can	be	activated	by	configura-
tion	parameters	are	implemented	in	a	specific	
release, this is also documented.

The	 trend	 towards	 ever	 finer,	 more	 granular	
reporting, is a challenge which can extend to
the level of individual requirements under
certain circumstances. An agreement with the
customer about a suitable depth or an aver-
age granularity minimises time and effort. A
reference to superordinate functions or func-
tion groups may thus be appropriate. The term
“Feature” is used for this at many points.

A	requirement	specification	of	good	quality	and	
stability, supports the creation of an informa-
tive function list. In case of a poor or volatile
requirement	 specification	 quality,	 the	 impor-
tance of the function list for obtaining an over-
view of the functionality increases.

Bug	fixes	are	already	shown	in	the	change	log.	
The function list additionally shows faults which
are	 known	but	which	have	not	 yet	 been	fixed	
(“known	 issues”).	 This	 increases	 transparency	
and	reinforces	confidence.

It also makes sense to create metrics for the
functional extensions between the releases.
How does the number of requirements develop

over the project? Are the agreed functional
extensions achieved? How great are the devi-
ations?

Figure 10 shows the degree of implementation
and	 fulfilment	 assumed	 for	 a	notional	 project	
progression. Here a distinction is made between
requirements, which were planned and imple-
mented for the release, and requirements which
were planned but could not be implemented.

3.2.5.	 Configuration	parameters
Configuration	parameters	can	either	be	param-
eter	set	at	build	time	in	a	makefile	configura-
tion or a post build time calibration parameter
set.	A	list	of	configuration	parameters	that	are	
intended to be used by the integrator is doc-
umented. A detailed description of the effect
on the functionality is not part of the release
description, but rather of the detailed technical
specification.	A	list	of	the	changes	in	compari-
son to former releases increases readability.

3.2.6.	 Verification	results
The purpose of this document is to make the
verification	results	of	 the	supplier	available	to	
the customer in a suitable way. The customer
and supplier agree which test methods and test
end criteria are to be used in the project right
at the start of the project.

It is necessary to agree to a suitable abstraction
level	 for	 the	 verification	 outcomes.	 This	mini-
mises time and expense for the customer and
the supplier and safeguards know-how. Nor-
mally	it	is	sufficient	to	report	the	test	coverage	
with reference to the customer requirements
(see	also	section	3.2.4).	The	detailed	test	results	
are only then made available, if this is agreed
on contractually. A good compromise often
involves making it possible to view detailed
results without these being passed on.

In	 case	 of	 configurable	 software,	 the	 supplier	
states	 which	 sets	 of	 configuration	 parameters	
have	been	verified	in	the	current	release	item.	
If the test level is different over the range of
variants this is documented (e. g. full test for
the standard variant and only test of standard
behaviour – “Geradeauslauf” – for other var-
iants).	 It	 could	 be	 useful	 to	 add	 information	
about	 those	 sets	 of	 configuration	 parameters	

15

Figure	10:	Implementation	status	requirements	specifications	(picture	source:	Leopold	Kostal)

300

500

700

900

1100

1280 1300

60
100 90 77 58

20 0

360

600

790

977

1158

1300 1300

0

200

400

600

800

1000

1200

1400

B0 B1 B2 C0 C1 C2 D0

R
eq

ui
re

m
en

ts

Release

implemented

not implemented

planned for release

that have been tested in former release items.
For the software release, the expectations on
the	 verification	 test	 of	 configurable	 software	
depend	on	the	configuration	time	point.	If	the	
software	is	configured	by	the	supplier,	complete	
test	coverage	for	this	configuration	is	expected	
by	the	OEM.	If	the	software	is	configured	during	
runtime	 by	 calibration	 values,	 the	 verification	
has to be performed by the integrator with this
special dataset.

Notes:
•	The	 defined	 document	 scope	 can	 deviate,	

depending on the project phase. In early
phases the document scope may possibly be
incomplete or adapted.

•	 In the event of several deliveries and recur-
sion loops for a release item, it may be bene-
ficial	to	carry	out	a	delta	analysis.

3.2.7. Metrics
Metrics assist in the all-round evaluation of a
software release item. This makes them an ele-
ment of quality management. In many cases
it makes sense to document the same metrics
over the project progression so that trend state-
ments can be derived from them. Therefore, the
careful	definition	of	the	metrics	at	the	start	of	
the	project	is	important.	Any	later	modification	
may require recalculations and in any case,
make statements on the long-term trend more

difficult.

The following metrics are commonly used:
•	Number	of	the	function	modifications	imple-

mented	(“functional	extensions“)
•	Number	of	bug	fixes
•	Number	of	faults	which	have	not	been	fixed	

or	open	points	(“known	issues”)
•	Test coverage with reference to the require-

ments
•	Test coverage with reference to the code cre-

ated (e. g. “function coverage” or “code cov-
erage”)

•	Test	coverage	with	reference	to	configuration	
parameters (e. g. coverage of functional var-
iants)

•	Metrics for evaluation of the product quality
(e.	g.	MISRA	or	HIS)

•	Maturity Index
The maturity index is a very useful tool for
determining the product quality or product
maturity during product development. It
takes	problems	and	modification	wishes	into	
consideration depending on their degree of
difficulty	and	processing	status.	Details	about	
this can be found in the glossary.

•	Resource usage (with regard to RAM, ROM
and	runtime,	see	figure	11)

16

3.2.8. Releasing Software
With this document, the release process of the
involved development departments is summa-
rised	in	a	multi-stage	process	(see	figure	12).

Releasing	a	software	release	item	for	a	defined	
use is declared by the authorized persons. This
is based on the technical release recommenda-
tions of the functions involved (e. g. software
development, test, quality assurance, safety
management)	 and	 also	 has	 to	 reflect	 the	 3rd

party software contained.

Different release levels can be issued depending
on the project phases. Examples of this include:
•	Releasing software for testing in the vehicle

in a closed testing area for specially permit-
ted drivers in prototype testing

•	Releasing software for testing in the vehicle
on public roads for a restricted group of peo-
ple who may drive the vehicle

•	Releasing software for unrestricted use of the
vehicle on public roads

In the case that the release level varies for dif-
ferent	variants	(due	to	different	configurations	
of	the	software),	this	difference	is	documented.	
It could be useful to apply a characterisation
like “Released for public roads with restric-
tions” supplemented by information denoting
the restrictions in terms of variants that do not
fulfil	 the	 release	 level	 “public	 road”	 (e.	g.	 a	
specific	 functional	 variant	 is	 supported	by	 the	
software but not thoroughly tested – therefore
the customer must not use this variant on pub-
lic	roads).

Figure	11:	Example	of	resources	consumption	actual/target	(picture	source:	ZF	Friedrichshafen/ZVEI)

0

100

200

300

400

500

600

K
by

te

ROM usage (data section)

Sum

Usable

85 %

17

Figure	12:	Example	of	a	multi-stage	release	process	(picture	source:	ZF	Friedrichshafen)

3.3. Proposal for basic release documenta-
tion
In most cases, the release documentation from
supplier to customer looks different from com-
pany to company, and also differs sometimes
for different projects in the same company. But
most release documents cover the same basic
information, just in different ways and with
some	 additional	 project-specific	 information	
added to this basis.

This chapter proposes which basic information
may always be present in the release documen-
tation to the customer. The content can differ
according to the kind of customer. For an OEM,
other information is important than for a Tier-1
(see	Appendix	A).

Examples for the basic content of a release doc-
umentation are shown in Appendix B and C.
Aside from the proposal for the basic content,
the release document can be supplemented by
the additional information mentioned in the
chapters 3.1 and 3.2 or additional information
requested	by	the	specific	customer.

Customer

Scope of Supply

Release
Recommendation

Release
Documentation

Software Safety
(HW + SW)

Electronic
Hardware

Software
Development

Software
Test

Project
Q-Report

Quality
Representative

Software
Supplier

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Mechanic
Hardware

18

Two central challenges need to be addressed
for an optimal implementation of the software
release process. These two challenges are main-
taining the communication between the part-
ners during the release process and creating
informational transparency.
A close cooperation between the OEMs and
their partners on the supplier and service pro-
vider side can help to ensure that:
•	Responsibilities in the release process are

discussed and documented at the beginning
of the project.

•	A high degree of transparency regarding the
status of the software forms the basis for
seamless cooperation and trust between all
partners.

•	Stability is maintained in the processes, which
is essential during critical project phases in
order to avoid frictional losses.

Consistency and continuity of the information
are of importance to the level of transparency
aimed	for.	They	form	the	basis	of	efficient	com-
munication. Today the exchange formats for
the documentation of software release items
between customer and supplier are different for
each customer. There is a need for standardisa-
tion of the interfaces for change management
and problem management. Also, a simple align-
ment of toolchains supports the consistency and
continuity of information and avoids misunder-
standings, adaptation efforts, and integration
issues	caused	by	incompatibility	(e.	g.	dbc-files,	
arxml-files,	…).

Transparency ensures that customer and sup-
plier have a common understanding about
requirements and expectations for each soft-
ware release item. This can be ensured through
project and release kick offs in which expecta-
tions	and	scope	are	clarified	jointly.	Clarification	
also occurs through a transparent presentation
of relevant information in release planning and
documentation. Here, it is important that a suit-
able	 abstraction	 level	 is	 defined	 jointly	 which	
is	 not	 too	fine	granular.	An	 excess	 of	 detailed	
information does not result in higher transpar-
ency.	The	degree	of	fulfilment	of	requirements	is	
reported in the release documentation. A report-
ing not based on a single source database can
cause inconsistency. A good overview of what

this software version is and is not capable of, is
a decisive factor.

Initial process quality evaluations (e. g. SPICE
assessment)	can	be	updated	during	the	project	
if required. They can contribute to building up a
basis of trust between the customer and the sup-
plier. This can be more helpful than reporting
in the project at a very detailed level. Require-
ments on the maturity of development processes
are exchanged between customer und suppliers
on each level. In practice this forwarding may
be limited when handling COTS software, open
source software or proprietary software with
restricted	insight.	Such	limitations	are	clarified	
between all involved parties – from the OEM to
any Tier-2 supplier.

Punctual planning and coordination of the
release contents is the basis for a high-quality
delivery	which	is	on	time.	Unplanned	modifica-
tions can easily lead to a delay in the project.
The number of software release items to be
delivered	is	defined	in	the	project	planning	and	
adhered to as far as possible. Action for action’s
sake through “daily” releases, only affects the
stability of the process. Daily software deliver-
ies within the framework of agile development
in particular at the component level can be
extremely advisable. Nightly builds by means of
continuous integration are an example of this.
They are not software releases in the sense of
this guideline because fewer formal require-
ments have to be met.

Late	 modifications	 on	 the	 basis	 of	 customer	
decisions must be evaluated jointly. The bal-
ance between adherence to schedules, quality
and	modification	requirements	of	the	customer	
can only be optimised successfully in regular
and open communication. Agreed metrics and a
joint evaluation are an important basis for this.
In the planning of the release it must be ensured
that	 test	 results	 and	 thus	 corrections	 can	 flow	
into subsequent releases.

The	 definition	 of	 different	 release	 levels	 and	
thus test scopes per release and even per func-
tional variant (implemented by software con-
figuration)	 can	 be	 documented	 in	 the	 release	
planning equally. The distinction between bug

4. Principles for Use in Practice

19

fix	on	a	side	branch	and	further	development	on	
the	main	branch	is	helpful.	Bug	fixes	which	can-
not be integrated in the main branch are usually
restricted to the most necessary.

The passing on of a software release to the
customer may be accompanied by a release
review. The development status achieved for
the requirements and expectations of the cus-
tomer	are	reflected	here.	A	joint	understanding	
is created, regarding the purposes for which the
release item can be used. An evaluation of the
development phase since the corresponding
release	 kick	 off	 (“lessons	 learned”)	 is	 logically	
an additional component of a release review.

20

5.	 Definitions	and	Terms

Bug	fix
Rectification	of	a	fault.

Calibration parameters
Parameters	 that	 configure	 the	 software	 post	
build time.

Coarse calibration release
Calibration parameter set providing a basic
functionality.

Configuration	parameters
Parameters	that	configure	the	software	at	build	
time.

Feature
Superordinate functionality or set of functional-
ities. See also functional extension.

Fine calibration release
Calibration	parameter	set	providing	a	specified	
functionality completely.

Functional extension
Planned implementation of additional func-
tionality.

Known issue
Not	rectified	known	fault.

Maturity	index	(Product/Release	maturity)
The aim of the maturity index is to summarise
the	product	maturity	in	a	classification	number.	
Here the “issues” are weighted according to
their severity and their processing status (see
table	2).	All	 release	 relevant	 faults,	wishes	 for	
modifications	 and	 feature	 implementations	
are treated equally as “issues”. The maturity
index is ultimately made up of the sum of the
weighted issues and is logically plotted as a
graph	over	time	(see	figure	13).

Release
Statement about the implemented functions,
properties and intended use for a release item.

Release item
Unambiguously	identifiable	element	with	stated	
functions, properties and purpose.

Table 2: Weighting factors for establishing the maturity index

Severity
status

Show stopper Major Minor

New or
analyzing

40 20 10

Open or
implementing

20 10 5

Testing 10 5 1

Closed or
rejected

0 0 0

21

Release kick off
A release kick off is a meeting attended by the
customer and supplier. Participants are deci-
sion makers, project managers and technical
experts.

In the meeting, the customer presents:
•	release objectives
•	acceptance criteria
and the supplier presents:
•	Planned validation measures and a detailed

time schedule where necessary.

The aim of the release kick off is balancing the
expectations	 of	 both	 sides	 and	 the	 definition	
of rules regarding communication, processes,
escalation etc.

Release plan
Description of the content and timing of the
releases and the release items.

Release review
Activity to determine the quality of a software
release item with respect to the intended func-
tions, properties and purpose.

Standard timeline
Schedule overview of the planned and coordi-
nated project phases and milestones with the
OEM. The expected outcomes are in time rela-
tion to the delivery for this integrated software
release.

Figure	13:	Typical	process	of	the	maturity	index	(picture	source:	TTTech	Computertechnik)

0

200

400

600

800

1000

1200

1400

1600

01.01.2013 01.02.2013 01.03.2013 01.04.2013 01.05.2013 01.06.2013

Maturity Index

Maturity Index

 Bug fixing and
verification are running

Blocking issues are
solved, the last test run
can start

Delivery of final release

All implementation
tasks for release
are defined

Implementation has
progressed testing
starts

Test and bug fixing
is running

Desired code
coverage achieved

Bug fixing and
verification are running

22

Participating companies in the “Software
Release” working group:
Automotive Lighting Reutlingen
Brose Fahrzeugteile
Continental
Lear Corporation
Leopold	Kostal
Marquardt
NXP Semiconductors Germany
OptE GP Consulting
Robert Bosch
Schaeffler	Technologies
Vector Informatik
Webasto
ZF Friedrichshafen

6. Participating Companies

23

24

Appendix A

Proposal for software release note content
Content Proposal to

Tier-1
Proposal
to OEM

Chapter

Document	Number	(Unique	ID) r r 3.1

Release Date r r 3.1

Contact Person r r 3.1

Software Release r r 3.1

Software Version r r 3.1

Customer Version r r 3.1

Release	Result	(Released	/	with	Restriction) r r 3.1

Cause of Restriction r r 3.1

Known	Issues r r 3.1

Revision History o o 3.1

Purpose of Release r r 3.1

Referenced Documents r r 3.1

Remarks r o 3.1

Delivery Content / Material List r r 3.2.1

Used	External	Module	Names o o 3.2.1

Used	External	Module	Version o o 3.2.1

Known	Issues	from	Used	External	Modules r r 3.2.1

Interface Compatibility r o 3.2.1

Used	Compiler	with	Version r o 3.2.1

Information about Build Environment r o 3.2.1

Open Source Software Information r r 3.2.1

Implemented Functions / Change List for this Release r r 3.2.3

Implementation	Status	(See	figure	10) o o 3.2.4

List of Open Change Requests r r 3.2.4

RAM	Usage	in	Percent r r 3.2.7

ROM	Usage	in	Percent r r 3.2.7

CPU	Load	in	Percent	(Worst	Case) r r 3.2.7

Resource	Consumption	Metric	(See	figure	11) o o 3.2.7

Caption r = recommended

o = optional

25

Appendix B

Example for Chapter 3.1 Overview Document

Document Number 123456 R2.0 Release Date Date

Software Release X-Sample Contact Person John Doe

Software Version vX.X Customer Version vX.Y

Release Result Released / Released with restriction

Cause of Restriction

...

Known Issues

...

Revision History

Revision Date Description

R1.0 Date Information about revision

R1.1 Date Information about revision

Rx.x Date Information about revision

Document Purpose

Explanation of this document and the intention of this software release.

Release Purpose

Purpose	of	the	release	(for	construction	phase,	test	run,	…)

Reference Documents

Number Name	/Short	Description Version Date

1 Document name vX.X Date

2

3

...

26

Example for chapter 3.2.3 Change Log and chapter 3.2.4 Function List

Implemented	Functions	/	List	of	Changes

Number Task	/	Change	ID Short Description of Task

1 Unique	ID ...

2 ...

3 ...

...

Software Release Plan

Reference to the release plan in the referred documents

List of Open Change Requests

Number Change ID Short Description of Change Request

1 Unique	ID ...

2 ...

3 ...

... ...

Status of the Requirements and Implementation

See	figure	10	“Implementation	status	requirements	specification“

Appendix C

27

Note

ZVEI
German Electrical and Electronic
Manufacturers‘ Association
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-0
Fax: +49 69 6302-317
E-mail: zvei@zvei.org
www.zvei.org So

ur
ce

s:
 C

on
tin

en
ta

l T
ev

es
, E

SG
 E

le
kt

ro
ni

ks
ys

te
m

-
un

d
Lo

gi
st

ik
, N

XP
 S

em
ic

on
du

ct
or

s
G

er
m

an
y,

 T
TT

ec
h

Co
m

pu
te

rt
ec

hn
ik

, V
ec

to
r

In
fo

rm
at

ik
, Z

F
Fr

ie
dr

ic
hs

ha
fe

n

