
Best Practice Guideline

Software Release

Platform Automotive –
Electronics, Infrastructure & Software

2

Impressum
Best Practice Guideline
Software Release

Published by:
ZVEI
German Electrical and Electronic
Manufacturers’ Association
Platform Automotive –
Electronics, Infrastructure & Software
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-276
Fax: +49 69 6302-407
E-mail: zvei-be@zvei.org
www.zvei.org

Responsible: Dr. Stefan Gutschling, ZVEI

Authors:
Gunther Bauer, ZF Friedrichshafen
Dr. Stefan Bunzel, Continental
Thorsten Geiselhart, Marquardt
Dr. Günther Heling, Vector Informatik
Markus Langhirt, Brose Fahrzeugteile
Henning Möller, NXP Semiconductors Germany

May 2015
1st Revision April 2016

While every care has been taken to ensure the accuracy of this doc-
ument, ZVEI assumes no liability for the content. All rights reserved.
This applies in particular to the storage, reproduction, distribution
and translation of this publication.

3

Table of Contents

1.	Objectives of This Guideline	 4

2.	Release Process	 5

2.1.	 Software release	 5

2.2.	 Process from the point of view of the supplier	 5

2.3.	 Process from the point of view of the OEM	 7

2.4.	 Impact of external software	 10

2.5.	 Impact of reuse of standardized software	 11

3.	Documentation and Artefacts	 12

3.1.	 Overview document	 12

3.2.	 Detailed release documentation	 12

	 3.2.1.	Delivery scope	 12

	 3.2.2.	System description	 13

	 3.2.3.	Change log	 13

	 3.2.4.	Function list	 14

	 3.2.5.	Configuration parameters	 14

	 3.2.6.	Verification results	 14

	 3.2.7.	Metrics	 15

	 3.2.8.	Releasing Software	 16

3.3.	 Proposal for a basic release documentation	 17

4.	Principles for Use in Practice	 18

5.	Definitions and Terms	 20

6.	Participating Companies	 23

Appendix A	 24

Appendix B	 25

Appendix C	 26

4

1.	 Objectives of This Guideline

The automotive industry is becoming more and
more focused on the necessity of a robust and
efficient software development process. This is
due to the increasing significance of software
based functions in vehicles, the increasing
interconnection of control units and the rapidly
growing complexity. More and more require-
ments have to be implemented in ever shorter
time spans. The growing complexity can only
be managed when the development process in
the network of vehicle manufacturers, suppliers
and service providers is coordinated (incl. clear
definition of tasks and responsibilities)

In previous years, the emphasis was on the
improvement of company internal processes
(such as in the implementation of automotive
SPICE or CMMI). The interfaces between vehicle
manufacturers and the suppliers were not con-
sidered in detail. The lack of common standards
right at the “software release” interface leads
to a considerable coordination effort and possi-
ble misunderstandings. The optimisation of the
software release process is of common interest
for all participants – it can make an important
contribution ensuring the maturity of the soft-
ware development process.

This guideline summarises experiences and best
practices for the essential aspects. This creates
awareness of where early bilateral cooperation
is helpful, even if clear cross-company recom-
mendations are not possible everywhere. This
guideline deals with both parties, contractor
and purchaser (e. g. OEM and supplier). A com-
mon conception is very important to handle
both viewpoints, not just for new business rela-
tionships but particularly in this case.

The objective is to present suggestions for an
optimisation of the interface (communication
and documentation) between the vehicle man-
ufacturer and the supplier. This is an essential
pre-requisite for meeting new challenges in
the field of software development (driver assis-
tance systems, service focused communication,
Car2X, etc.) more efficiently. The definition of
the artefacts belonging to a software release is
at the centre of this. The primary focus is an
equal understanding of the contents with less
emphasis being placed on standardised data
formats.

5

2.1.	 Software release
Software release means that the software is
cleared to be passed on to the user or customer.
With the release of software, the supplier gives
a statement about the implemented functions
and properties and hands them over to the cus-
tomer within the defined framework for use.
Release of the software typically results in the
fulfilment of contractual elements of the busi-
ness relationship between the customer and the
supplier. On the other hand software is released
as an item, which is delivered at the end of the
development process.

Software development for embedded control
units can also be considered in a further con-
text. To build up the complete control system,
software components, which may be delivered
from various suppliers, are integrated on indi-
vidual control units in a first step. In a second
step, all control units are integrated to a com-
plete network in the vehicle. From the vehicle
manufacturer’s point of view, this applies right
up to distributed functions which involve the
complete vehicle. Automotive software devel-
opment is part of a system which involves many
participants. It has to consider disciplines such
as electrics, electronics, mechanics and inter-
connection as boundary conditions. For this
purpose, a process definition with many syn-
chronisation points has become established in
the automotive industry for which a software
release timeline is required.

In linguistic interaction – and also subse-
quently in these guidelines – the term release
has different meanings. First of all it refers to
the result of the release process, meaning the
artefact to be released and also the associated
documents and metrics. We will call it “release
item” in the following. The process which
leads to the release and the release item is the
release process. This guideline casts light on the
release process from various perspectives in the
sections which follow. These perspectives are
from the point of view of the supplier and that
of the vehicle manufacturer. The release item is
to be regarded generically as a component in
this release process. This may involve a software
component – from the point of view of the sup-
plier. It may, however, also involve a group of

software components which are to be released
jointly, such as the software for a complete con-
trol unit. From the point of view of the OEM, a
“component” often also includes hardware and
then refers to a control unit to be released for
example.

2.2.	 Process from the point of view of the
supplier
The process from the point of view of the sup-
plier is broken down into various development
cycles over various sub-systems (mechanics,
hardware, software). They can progress at dif-
ferent speeds and they are synchronised with
milestones for the complete system (see fig-
ure 1). The development methods of the indi-
vidual subsystems can be independent of one
another (e. g. V-model for the hardware and
Agile methods for the software development).
The software release process of the supplier
contains the following steps:
•	Functional extensions, modifications and bug

fixes are integrated into the software compo-
nents according to the release plan.

•	The verified components are integrated into
the complete software.

•	The integrated software is verified as planned
(e. g. based on the results of impact analyses
for modifications)

•	The integrated software may possibly be
released together with a calibration dataset
(see figure 2).

•	The complete software may be delivered
together with other system components such
as hardware if necessary. The scope of the
software release must be defined and vali-
dated prior to delivery.

•	The complete software and calibration data-
set together with the supporting documenta-
tion represent the software release item from
the point of view of the supplier.

2.	 Release Process

6

Figure 1: Process: Synchronization of the sub system development (picture source: ESG Elektroniksystem- und Logistik)

Fine calibration
release

Testing
coordination

Change request Component Complete software Basic dataset
modification related software test

Integrated software
release

Coarse calibration
release

Release of the
application status
with neutral data

Release of the
basic dataset

Change request

Change request

Component

Release of
the sources

Release of the
component

Basic dataset
modification related software test

Basic dataset
modification related software test

Change request

Change request

Change request

External component

Figure 2: Sequence change request/bug fix (picture source: ZF Friedrichshafen)

Product:
I-Level

Mechanics:
Long Cycles

Hardware:
Medium Cycles

Software:
Short Cycles

Project
Preparation

Concept
Phase

Product and Process
Development

Production
Readiness and

Validation

Ramp up and Series
ProductionGate Gate Gate Gate Gate

I2.x I2.x I3.x I3.x I4.x

I1 I2I1.5 I2.5 I3 I3.5 I4 I5

7

2.3.	 Process from the point of view of the
OEM
The OEM expects verified software for the
required maturity level from the supplier. From
the point of view of the OEM, the software is
part of the control unit and thus part of a com-
ponent. The OEM tests this component in-house
in various steps. Component tests, subsystem
tests and system tests are carried out. The com-
ponents (control units) are brought closer and
closer to the complete vehicle and tested (see
figure 3) in the various validation stages.

In component tests, the component is tested
intrinsically, for functional capability and flash
capability for example. Subsystem tests validate
the interaction between the component and the
direct communication partners. The freedom
from side effects and the functionality in the
vehicle are tested in the complete system. If
errors occur during a test, these are fed back
to the component developer (supplier) for bug
fixing in subsequent releases (see figure 4).

Complete vehicle
test & validation

Subsystem
test & validation

Component test

Component test

Component test

Component test

Component test

Component test

Component test

Component test

Release process

Release

Subsystem
test & validation

Subsystem
test & validation

Release item

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

HW
SW

ConfigurationSupplier
Component

Figure 3: Release process from the point of view of the OEM (picture source: ESG Elektroniksystem- und Logistik)

"System Release"

Verification

Integration

Implementation

Design
Analysis / specification

Requirements /
Bugfix req.

Release

Component:
ECU / SW

incidents

Integration

Config freeze

Defect analysis

Verification

Subsystem Report

delivery

Integration

Config freeze

Defect analysis

Verification
System

Report

incidents

"delivery"
& report

Principle of the
different integration
levels

Release

Figure 4: Principle of the different integration levels (picture source: ESG Elektroniksystem- und Logistik)

8

Release process from the point of view of
the OEM – time sequence
The integration of software into the system con-
sists of three different integration stages. The
first stage is the integration on the component
level, and then the integrations at the subsys-
tem and system level are performed. Testing
can be started consecutively but run in parallel.
Once the quick checks of an integration stage
have been completed successfully, the next
test stage can be started. Additional deliveries
of software are only permitted for show stop-
pers. The system freeze is done at a previously
defined point in time. From this point in time
onwards, no additional deliveries are permitted
and the concluding tests are carried out (see
figure 5).

Release process from the point of view of
the OEM – Theory
Integration stages with defined functional
extensions are planned by the OEM. At the start
of the development, the intervals are longer,
between two and four months. Shortly before
SOP, the functional extensions are no longer as
complex and come at intervals of 2 to 6 weeks
(see figure 6).

Release process from the point of view of
the OEM – Reality
Bug fix loops are pushed between the integra-
tion stages through unplanned bug fix meas-
ures. This can be traced back to the fact that
bug fixes are delivered additionally, regardless
of the planned timeline. Bug fixes and func-
tional extensions are often not separated in
practice.

Capacities for further development and vali-
dation may be factored in for these unplanned
bug fix loops. Unplanned loops may delay the
final software release. At the same time there
is a probability that the comprehensibility and
transparency of the actions carried out, will suf-
fer due to the loops which are slotted in (see
figure 7).

Release process from the point of view of
the OEM – Best practice
In reality errors are to be expected at every inte-
gration stage. Therefore bug fix loops should
be planned right from the start. This ensures a
higher quality and transparency in the software
development process. The same amount of time
should be planned for the additional bug fix
loops for each iteration (functional extension)
(see figure 8).

SWL

SR

Additional delivery for
show stopper

Additional delivery for
show stopper

t

KF

SF1 SF2
System

Subsystem

Component

Key:
SWL
KF
SF1
SF2
SR
QC

Software delivery
Freeze of components
System freeze 1
System freeze 2
System release
Quick check

QC

QC

“System Release”

Function tests

System function test with focus on the complete
system, side effects and characteristic features

Component test

Release

Release

Release

Figure 5: Release process: temporal sequence (picture source: ESG Elektroniksystem- und Logistik)

9

Figure 6: Release process from the point of view of the OEM: Theory (picture source: ESG Elektroniksystem- und Logistik)

Figure 7: Release process from the point of view of the OEM: Reality (picture source: ESG Elektroniksystem- und Logistik)

Figure 8: Release process from the point of view of the OEM: Best practice (picture source: ESG Elektroniksystem- und Logistik)

Functional extension

Functional extension

Functional extension

Functional extension

Functional extension

Functional extension

Bugfix

Bugfix

Functional extension

Functional extension

Functional extension Bugfix

Bugfix

10

2.4.	 Impact of externally developed soft-
ware
Automotive software releases increasingly con-
tain software from multiple suppliers, even
from a cascade of suppliers. This extends the
classic relationship between the OEM as cus-
tomer and Tier-1 as supplier in several aspects.
On the one hand, a supplier has to assume the
perspective of an OEM, when he integrates soft-
ware from a Tier-2 supplier into his own com-
ponent. On the other hand, an OEM also has
to assume the supplier perspective, when he
provides software that a supplier integrates into
a software package or into hardware. For the
software release, there is an important differ-
ence whether the integration of external soft-
ware is ordered by the customer or if it is a free
decision of the supplier. The responsibility for
releasing such external software parts should be
clarified between customer and supplier before
the first delivery.
In a cascading sequence of software suppli-
ers, ideally the software requirements related
to quality, maturity, development processes,
timing of delivery should be forwarded to each
supplier on each level. In practice, this forward-
ing is limited. For example:
•	Commercial-off-the-shelf (COTS) software

components, e. g. AUTOSAR basic software
For the most part, COTS software has to be
integrated as is. Quality assessments at
the supplier may not be possible. Software
changes can be difficult with regard to con-
tent, timing, or even in general. Desired
release documentation and artefacts (cf.
chapter 3) may not be provided by the sup-
plier in a format and with the content that
can easily be integrated into the overall doc-
umentation of the Tier-1 supplier. In order to
address these uncertainties and to mitigate
corresponding risks the integrator of such
software has to transform the information of
the COTS provider or even has to add appro-
priate quality assurance measures.

•	Open source software	
Although for open source software the source
code is fully transparent to an integrator, the
implications are quite similar and even more
likely than with COTS software. Open source
software is often maintained by a community,
so that the availability of any needed updates
is not assured. Even a reliable issue report-
ing is often not guaranteed. Additionally, an
assessment of the development process of an
open source component usually is not feasi-
ble. Such implications should be clarified with
the customer, even if the customer requested
the usage of this open source component and
even if it is the OEM. A very important issue is
the license type of open source software. If it
is a strong copyleft license (GPL) for example,
all code has to be shared. Due to this reason,
open source license information is an impor-
tant part of the release notes.

•	Proprietary software (e. g. functional
software from OEM)	
Such software often contains innovative func-
tions and thus is linked to specific intellec-
tual property. To protect this, an integrator
does not often have transparent insight into
the source code, e. g. if he is requested to
integrate pure object code. In that case, the
capability of the integrator and consequently
his responsibility is limited to the integra-
tion purpose. Depending on the scope of the
integrated software and its functionalities,
the functional responsibility stays with the
supplier of the component. The distribution
of these responsibilities should be clearly
defined in the contractual relationship
between customer and supplier. In practice,
this is particularly important for an integra-
tor if an OEM assumes the additional role of
a software supplier, beneath the role of the
top-level awarding authority (customer).

11

2.5.	 Impact of configurable software
Configurable software is a key principle to real-
ise ever growing software content with reason-
able effort and quality or to enable reuse. But
configuration of software brings along some
drawbacks that have to be addressed in the con-
text of releasing and providing software.

One example is AUTOSAR basic software with
thousands of parameters including configura-
tion parameters that significantly influence the
behaviour of the software. A similar case is a
platform software of a supplier, which is devel-
oped to be used in many projects for different
OEMs.
Differentiate:
•	Configuration by supplier	

Part of the configuration is done by the
supplier before delivering the software.
This restricts the configuration freedom for
the integrator/customer – we could call it
“pre-configuration”.

•	Configuration by integrator	
Part of the configuration is done by the inte-
grator/customer (OEM who integrates an ECU
into a vehicle variant or Tier-1 who integrates
software components into an ECU).

Configuration leads to functional variants and
the main challenge is to adequately test the
variants, because testing of all possible variants
may not be possible with a reasonable effort.
Different strategies can be used to meet this
challenge that are not discussed here. Regard-
ing software releases at the interface of differ-
ent organizations, maximal transparency is the
major goal. This will be dealt with in chapter 3.

12

This chapter provides a description of support-
ing documents accompanying the delivery of a
release item.

3.1.	 Overview document
Practice shows that an overview document pro-
vides the best access to release documentation
for the customer. The following aspects are
summarised in this document:
•	A short description of the release item, pur-

pose of use (construction phase, test run,
intermediate release ...). Using a clearly
structured nomenclature in the release desig-
nation enables the distinction between main
releases and bug fix releases. In addition it is
useful to state in the nomenclature, whether
the software has interface compatibility with
its predecessor or not.

•	Overview of the documents delivered, over-
view of the documentation.

•	Project schedule with reference to the current
phase in the project (A, B, C sample)

•	Short description of the agreed standard
timeline or the process model for a release
(see figure 9).

3.2.	 Detailed release documentation

3.2.1.	 Delivery scope
This document supplies a comprehensive over-
view of the software components or the control
units. This includes an overview of variants e. g.
in the form of a matrix, which contains all the
necessary information for the integration of the
component. The 3rd party software components
contained in this delivery also have to be listed,
independent of whether they are OEM standard
software, open source software, or any kind of
proprietary software.

The information concerning software version,
configuration files, flash bootloader, memory
data (RAM/ROM), interface description, HW
etc. denoting a software release item must be
stated clearly and in detail here. If required,
parameter sets and diagnosis data inputs are
also described.

Furthermore it is reasonable to describe the
exact data of the “build environment” used,
for instance compiler versions. In Table 1, the
matrix description of the B1 sample stage of
a control unit is given as an example. Similar
presentations can also be used for pure soft-
ware deliveries. In particular with 3rd party
software, it is important to also mention the
license (see Table 1).

3.	 Documentation and Artefacts

Figure 9: Example standard procedure software release (picture source: ZF Friedrichshafen)

Test OEM

Network description n Release n-1 Network description n+1 Release n

No of weeks before delivery to OEM
-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Preliminary freeze
all requirements known

Freeze
all requirements discussed

Joint clearance
OEM/supplier

Ability to drive status to OEM

Delivery of the components

Basic functionality
approved to OEM

SW test vehicleCalibration

Programming / integration / test
SW test HIL

13

Sample status Variant Tier-1
Part no.

OEM LU no.
(delivery scope)

OEM ZB no.
(assembly)

B1

1. Flexray single XY

2. Flexray x4 XY

3. Flexray x8 XY

Identification

SW unique identification for delivered software
version (e. g. software part number)

HW unique identification for delivered E/E
hardware version (e. g. E/E hardware part
number)

MECH unique identification for delivered mechanic
hardware version (e. g. number and index of
drawing)

DBC file OEM ...

ECU file name ...

Standard SW package
OEM

...

Flash bootloader – status ...

SW article code Extended SW article code

...

Table 1 : Example of release information for a control unit:

3.2.2.	 Subsystem description
In addition to the unique identification of the
release item in the delivery scope, a clear ref-
erence to the subsystem or control unit level
is added for a software release item. This is
especially helpful for the customer if he wishes
to check functionalities on a release item and
wishes to have the corresponding framework
conditions available quickly.

The following information is part of the subsys-
tem description for example:
•	Circuit diagram of the control unit
•	 Interface description of the control unit or

subsystem
•	Block wiring diagram
•	Connector description

This important block of release documentation
can frequently be transferred from one release
to the next release. Information on the compat-
ibility of the software release item to various
hardware states must also be documented for
changes in the system or control units HW.

3.2.3.	 Change log
The task of the change log is to give the cus-
tomer an overview of the modifications of the
release item. A central element is a listing of the
software changes and bug fixes with reference to
the previous release item. The changes will ide-
ally be exported from the workflow management
system in order to avoid consistency problems
of software and documentation. It is sensible
to reference the document “Delivery scope” in
order to document the compatibility of hard-
ware, software and tools clearly.

14

It is useful to make a distinction between new
or modified requirements and bug fixes which
are implemented. Tables with the following col-
umns as categories are commonly used:
•	Consecutive number
•	Unique supplier change ID (reference to sup-

plier‘s change management system)
•	Headline of the change
•	Change type (requirement or bug fix)
•	Unique customer change ID (reference to

requirements or problem management sys-
tem of the customer)

3.2.4.	 Function list
The functions to be implemented for a release
are specified during release planning and
stated in the function list. They are referenced
to the relevant requirements documents. Fur-
ther important information is whether the
planned function was implemented completely.
If it was only implemented in part, a statement
of the resulting limitations is added. If not all
the variants that can be activated by configura-
tion parameters are implemented in a specific
release, this is also documented.

The trend towards ever finer, more granular
reporting, is a challenge which can extend to
the level of individual requirements under
certain circumstances. An agreement with the
customer about a suitable depth or an aver-
age granularity minimises time and effort. A
reference to superordinate functions or func-
tion groups may thus be appropriate. The term
“Feature” is used for this at many points.

A requirement specification of good quality and
stability, supports the creation of an informa-
tive function list. In case of a poor or volatile
requirement specification quality, the impor-
tance of the function list for obtaining an over-
view of the functionality increases.

Bug fixes are already shown in the change log.
The function list additionally shows faults which
are known but which have not yet been fixed
(“known issues”). This increases transparency
and reinforces confidence.

It also makes sense to create metrics for the
functional extensions between the releases.
How does the number of requirements develop

over the project? Are the agreed functional
extensions achieved? How great are the devi-
ations?

Figure 10 shows the degree of implementation
and fulfilment assumed for a notional project
progression. Here a distinction is made between
requirements, which were planned and imple-
mented for the release, and requirements which
were planned but could not be implemented.

3.2.5.	 Configuration parameters
Configuration parameters can either be param-
eter set at build time in a makefile configura-
tion or a post build time calibration parameter
set. A list of configuration parameters that are
intended to be used by the integrator is doc-
umented. A detailed description of the effect
on the functionality is not part of the release
description, but rather of the detailed technical
specification. A list of the changes in compari-
son to former releases increases readability.

3.2.6.	 Verification results
The purpose of this document is to make the
verification results of the supplier available to
the customer in a suitable way. The customer
and supplier agree which test methods and test
end criteria are to be used in the project right
at the start of the project.

It is necessary to agree to a suitable abstraction
level for the verification outcomes. This mini-
mises time and expense for the customer and
the supplier and safeguards know-how. Nor-
mally it is sufficient to report the test coverage
with reference to the customer requirements
(see also section 3.2.4). The detailed test results
are only then made available, if this is agreed
on contractually. A good compromise often
involves making it possible to view detailed
results without these being passed on.

In case of configurable software, the supplier
states which sets of configuration parameters
have been verified in the current release item.
If the test level is different over the range of
variants this is documented (e. g. full test for
the standard variant and only test of standard
behaviour – “Geradeauslauf” – for other var-
iants). It could be useful to add information
about those sets of configuration parameters

15

Figure 10: Implementation status requirements specifications (picture source: Leopold Kostal)

300

500

700

900

1100

1280 1300

60
100 90 77 58

20 0

360

600

790

977

1158

1300 1300

0

200

400

600

800

1000

1200

1400

B0 B1 B2 C0 C1 C2 D0

R
eq

ui
re

m
en

ts

Release

implemented

not implemented

planned for release

that have been tested in former release items.
For the software release, the expectations on
the verification test of configurable software
depend on the configuration time point. If the
software is configured by the supplier, complete
test coverage for this configuration is expected
by the OEM. If the software is configured during
runtime by calibration values, the verification
has to be performed by the integrator with this
special dataset.

Notes:
•	The defined document scope can deviate,

depending on the project phase. In early
phases the document scope may possibly be
incomplete or adapted.

•	 In the event of several deliveries and recur-
sion loops for a release item, it may be bene-
ficial to carry out a delta analysis.

3.2.7.	 Metrics
Metrics assist in the all-round evaluation of a
software release item. This makes them an ele-
ment of quality management. In many cases
it makes sense to document the same metrics
over the project progression so that trend state-
ments can be derived from them. Therefore, the
careful definition of the metrics at the start of
the project is important. Any later modification
may require recalculations and in any case,
make statements on the long-term trend more

difficult.

The following metrics are commonly used:
•	Number of the function modifications imple-

mented (“functional extensions“)
•	Number of bug fixes
•	Number of faults which have not been fixed

or open points (“known issues”)
•	Test coverage with reference to the require-

ments
•	Test coverage with reference to the code cre-

ated (e. g. “function coverage” or “code cov-
erage”)

•	Test coverage with reference to configuration
parameters (e. g. coverage of functional var-
iants)

•	Metrics for evaluation of the product quality
(e. g. MISRA or HIS)

•	Maturity Index	
The maturity index is a very useful tool for
determining the product quality or product
maturity during product development. It
takes problems and modification wishes into
consideration depending on their degree of
difficulty and processing status. Details about
this can be found in the glossary.

•	Resource usage (with regard to RAM, ROM
and runtime, see figure 11)

16

3.2.8.	 Releasing Software
With this document, the release process of the
involved development departments is summa-
rised in a multi-stage process (see figure 12).

Releasing a software release item for a defined
use is declared by the authorized persons. This
is based on the technical release recommenda-
tions of the functions involved (e. g. software
development, test, quality assurance, safety
management) and also has to reflect the 3rd

party software contained.

Different release levels can be issued depending
on the project phases. Examples of this include:
•	Releasing software for testing in the vehicle

in a closed testing area for specially permit-
ted drivers in prototype testing

•	Releasing software for testing in the vehicle
on public roads for a restricted group of peo-
ple who may drive the vehicle

•	Releasing software for unrestricted use of the
vehicle on public roads

In the case that the release level varies for dif-
ferent variants (due to different configurations
of the software), this difference is documented.
It could be useful to apply a characterisation
like “Released for public roads with restric-
tions” supplemented by information denoting
the restrictions in terms of variants that do not
fulfil the release level “public road” (e. g. a
specific functional variant is supported by the
software but not thoroughly tested – therefore
the customer must not use this variant on pub-
lic roads).

Figure 11: Example of resources consumption actual/target (picture source: ZF Friedrichshafen/ZVEI)

0

100

200

300

400

500

600

K
by

te

ROM usage (data section)

Sum

Usable

85 %

17

Figure 12: Example of a multi-stage release process (picture source: ZF Friedrichshafen)

3.3.	 Proposal for basic release documenta-
tion
In most cases, the release documentation from
supplier to customer looks different from com-
pany to company, and also differs sometimes
for different projects in the same company. But
most release documents cover the same basic
information, just in different ways and with
some additional project-specific information
added to this basis.

This chapter proposes which basic information
may always be present in the release documen-
tation to the customer. The content can differ
according to the kind of customer. For an OEM,
other information is important than for a Tier-1
(see Appendix A).

Examples for the basic content of a release doc-
umentation are shown in Appendix B and C.
Aside from the proposal for the basic content,
the release document can be supplemented by
the additional information mentioned in the
chapters 3.1 and 3.2 or additional information
requested by the specific customer.

Customer

Scope of Supply

Release
Recommendation

Release
Documentation

Software Safety
(HW + SW)

Electronic
Hardware

Software
Development

Software
Test

Project
Q-Report

Quality
Representative

Software
Supplier

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Release
Recommendation

Mechanic
Hardware

18

Two central challenges need to be addressed
for an optimal implementation of the software
release process. These two challenges are main-
taining the communication between the part-
ners during the release process and creating
informational transparency.
A close cooperation between the OEMs and
their partners on the supplier and service pro-
vider side can help to ensure that:
•	Responsibilities in the release process are

discussed and documented at the beginning
of the project.

•	A high degree of transparency regarding the
status of the software forms the basis for
seamless cooperation and trust between all
partners.

•	Stability is maintained in the processes, which
is essential during critical project phases in
order to avoid frictional losses.

Consistency and continuity of the information
are of importance to the level of transparency
aimed for. They form the basis of efficient com-
munication. Today the exchange formats for
the documentation of software release items
between customer and supplier are different for
each customer. There is a need for standardisa-
tion of the interfaces for change management
and problem management. Also, a simple align-
ment of toolchains supports the consistency and
continuity of information and avoids misunder-
standings, adaptation efforts, and integration
issues caused by incompatibility (e. g. dbc-files,
arxml-files, …).

Transparency ensures that customer and sup-
plier have a common understanding about
requirements and expectations for each soft-
ware release item. This can be ensured through
project and release kick offs in which expecta-
tions and scope are clarified jointly. Clarification
also occurs through a transparent presentation
of relevant information in release planning and
documentation. Here, it is important that a suit-
able abstraction level is defined jointly which
is not too fine granular. An excess of detailed
information does not result in higher transpar-
ency. The degree of fulfilment of requirements is
reported in the release documentation. A report-
ing not based on a single source database can
cause inconsistency. A good overview of what

this software version is and is not capable of, is
a decisive factor.

Initial process quality evaluations (e. g. SPICE
assessment) can be updated during the project
if required. They can contribute to building up a
basis of trust between the customer and the sup-
plier. This can be more helpful than reporting
in the project at a very detailed level. Require-
ments on the maturity of development processes
are exchanged between customer und suppliers
on each level. In practice this forwarding may
be limited when handling COTS software, open
source software or proprietary software with
restricted insight. Such limitations are clarified
between all involved parties – from the OEM to
any Tier-2 supplier.

Punctual planning and coordination of the
release contents is the basis for a high-quality
delivery which is on time. Unplanned modifica-
tions can easily lead to a delay in the project.
The number of software release items to be
delivered is defined in the project planning and
adhered to as far as possible. Action for action’s
sake through “daily” releases, only affects the
stability of the process. Daily software deliver-
ies within the framework of agile development
in particular at the component level can be
extremely advisable. Nightly builds by means of
continuous integration are an example of this.
They are not software releases in the sense of
this guideline because fewer formal require-
ments have to be met.

Late modifications on the basis of customer
decisions must be evaluated jointly. The bal-
ance between adherence to schedules, quality
and modification requirements of the customer
can only be optimised successfully in regular
and open communication. Agreed metrics and a
joint evaluation are an important basis for this.
In the planning of the release it must be ensured
that test results and thus corrections can flow
into subsequent releases.

The definition of different release levels and
thus test scopes per release and even per func-
tional variant (implemented by software con-
figuration) can be documented in the release
planning equally. The distinction between bug

4.	 Principles for Use in Practice

19

fix on a side branch and further development on
the main branch is helpful. Bug fixes which can-
not be integrated in the main branch are usually
restricted to the most necessary.

The passing on of a software release to the
customer may be accompanied by a release
review. The development status achieved for
the requirements and expectations of the cus-
tomer are reflected here. A joint understanding
is created, regarding the purposes for which the
release item can be used. An evaluation of the
development phase since the corresponding
release kick off (“lessons learned”) is logically
an additional component of a release review.

20

5.	 Definitions and Terms

Bug fix
Rectification of a fault.

Calibration parameters
Parameters that configure the software post
build time.

Coarse calibration release
Calibration parameter set providing a basic
functionality.

Configuration parameters
Parameters that configure the software at build
time.

Feature
Superordinate functionality or set of functional-
ities. See also functional extension.

Fine calibration release
Calibration parameter set providing a specified
functionality completely.

Functional extension
Planned implementation of additional func-
tionality.

Known issue
Not rectified known fault.

Maturity index (Product/Release maturity)
The aim of the maturity index is to summarise
the product maturity in a classification number.
Here the “issues” are weighted according to
their severity and their processing status (see
table 2). All release relevant faults, wishes for
modifications and feature implementations
are treated equally as “issues”. The maturity
index is ultimately made up of the sum of the
weighted issues and is logically plotted as a
graph over time (see figure 13).

Release
Statement about the implemented functions,
properties and intended use for a release item.

Release item
Unambiguously identifiable element with stated
functions, properties and purpose.

Table 2: Weighting factors for establishing the maturity index

Severity
status

Show stopper Major Minor

New or
analyzing

40 20 10

Open or
implementing

20 10 5

Testing 10 5 1

Closed or
rejected

0 0 0

21

Release kick off
A release kick off is a meeting attended by the
customer and supplier. Participants are deci-
sion makers, project managers and technical
experts.

In the meeting, the customer presents:
•	release objectives
•	acceptance criteria
and the supplier presents:
•	Planned validation measures and a detailed

time schedule where necessary.

The aim of the release kick off is balancing the
expectations of both sides and the definition
of rules regarding communication, processes,
escalation etc.

Release plan
Description of the content and timing of the
releases and the release items.

Release review
Activity to determine the quality of a software
release item with respect to the intended func-
tions, properties and purpose.

Standard timeline
Schedule overview of the planned and coordi-
nated project phases and milestones with the
OEM. The expected outcomes are in time rela-
tion to the delivery for this integrated software
release.

Figure 13: Typical process of the maturity index (picture source: TTTech Computertechnik)

0

200

400

600

800

1000

1200

1400

1600

01.01.2013 01.02.2013 01.03.2013 01.04.2013 01.05.2013 01.06.2013

Maturity Index

Maturity Index

 Bug fixing and
verification are running

Blocking issues are
solved, the last test run
can start

Delivery of final release

All implementation
tasks for release
are defined

Implementation has
progressed testing
starts

Test and bug fixing
is running

Desired code
coverage achieved

Bug fixing and
verification are running

22

Participating companies in the “Software
Release” working group:
Automotive Lighting Reutlingen
Brose Fahrzeugteile
Continental
Lear Corporation
Leopold Kostal
Marquardt
NXP Semiconductors Germany
OptE GP Consulting
Robert Bosch
Schaeffler Technologies
Vector Informatik
Webasto
ZF Friedrichshafen

6.	 Participating Companies

23

24

Appendix A

Proposal for software release note content
Content Proposal to

Tier-1
Proposal
to OEM

Chapter

Document Number (Unique ID) r r 3.1

Release Date r r 3.1

Contact Person r r 3.1

Software Release r r 3.1

Software Version r r 3.1

Customer Version r r 3.1

Release Result (Released / with Restriction) r r 3.1

Cause of Restriction r r 3.1

Known Issues r r 3.1

Revision History o o 3.1

Purpose of Release r r 3.1

Referenced Documents r r 3.1

Remarks r o 3.1

Delivery Content / Material List r r 3.2.1

Used External Module Names o o 3.2.1

Used External Module Version o o 3.2.1

Known Issues from Used External Modules r r 3.2.1

Interface Compatibility r o 3.2.1

Used Compiler with Version r o 3.2.1

Information about Build Environment r o 3.2.1

Open Source Software Information r r 3.2.1

Implemented Functions / Change List for this Release r r 3.2.3

Implementation Status (See figure 10) o o 3.2.4

List of Open Change Requests r r 3.2.4

RAM Usage in Percent r r 3.2.7

ROM Usage in Percent r r 3.2.7

CPU Load in Percent (Worst Case) r r 3.2.7

Resource Consumption Metric (See figure 11) o o 3.2.7

Caption r = recommended

o = optional

25

Appendix B

Example for Chapter 3.1 Overview Document

Document Number 123456 R2.0 Release Date Date

Software Release X-Sample Contact Person John Doe

Software Version vX.X Customer Version vX.Y

Release Result Released / Released with restriction

Cause of Restriction

...

Known Issues

...

Revision History

Revision Date Description

R1.0 Date Information about revision

R1.1 Date Information about revision

Rx.x Date Information about revision

Document Purpose

Explanation of this document and the intention of this software release.

Release Purpose

Purpose of the release (for construction phase, test run, …)

Reference Documents

Number Name /Short Description Version Date

1 Document name vX.X Date

2

3

...

26

Example for chapter 3.2.3 Change Log and chapter 3.2.4 Function List

Implemented Functions / List of Changes

Number Task / Change ID Short Description of Task

1 Unique ID ...

2 ...

3 ...

...

Software Release Plan

Reference to the release plan in the referred documents

List of Open Change Requests

Number Change ID Short Description of Change Request

1 Unique ID ...

2 ...

3 ...

... ...

Status of the Requirements and Implementation

See figure 10 “Implementation status requirements specification“

Appendix C

27

Note

ZVEI
German Electrical and Electronic
Manufacturers‘ Association
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-0
Fax: +49 69 6302-317
E-mail: zvei@zvei.org
www.zvei.org So

ur
ce

s:
 C

on
tin

en
ta

l T
ev

es
, E

SG
 E

le
kt

ro
ni

ks
ys

te
m

-
un

d
Lo

gi
st

ik
, N

XP
 S

em
ic

on
du

ct
or

s
G

er
m

an
y,

 T
TT

ec
h

Co
m

pu
te

rt
ec

hn
ik

, V
ec

to
r

In
fo

rm
at

ik
, Z

F
Fr

ie
dr

ic
hs

ha
fe

n

