
German Electrical and Electronic Manufacturers’ Association

Best Practice Guideline

Software for Safety-Related

Automotive Systems

Software
Automotive

Tool-QualificationISO 26262

Safety Manual

Functional Safety
ASIL Level

Requirements

Analysis & Classification

Tool Confidence Level
TCL



Imprint
Best Practice Guideline
Software for Safety-Related Automotive Systems

Publisher: 
ZVEI - German Electrical and Electronic 
Manufacturers’ Association 
Automotive – Electronics, Infrastructure & Software 
Lyoner Strasse 9 
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-276 
Fax: +49 69 6302-407 
E-mail: zvei-be@zvei.org 
www.zvei.org

Responsible: Dr. Stefan Gutschling

Dezember 2020 – Version 2.0

While every care has been taken to ensure the accuracy of this document, ZVEI assumes no liability for the 
content. All rights reserved. This applies in particular to the storage, reproduction, distribution and transla-
tion of this publication.



Table of Contents

1	 Objectives of this Guideline	 4

2	 Overview	 4

3	 Explanation of Terms	 5

4	 The Relevance of ISO 26262	 6

5	 Software Safety Concepts and Architectures	 8
5.1	 Introduction	 8
5.2	 “Mixed ASIL Design”	 9
5.3	 “Maximum ASIL Design”	 10
5.4	 Mechanisms to realize freedom from interference	 10

6	 Safety Analyses on Software Architectural Level	 13
6.1	 Introduction	 13
6.2	 Methodology	 13

6.2.1	 Software Safety Requirements and Elements in Scope	 13
6.2.2	 Failure Modes	 13
6.2.3	 Impact on Safety Requirements allocated to the Software	 14
6.2.4	 Potential Failure Causes	 14
6.2.5	 Safety Measures	 14
6.2.6	 Common Pitfalls	 14
6.2.7	 Example	 14

7	 Usage of Safety Elements out of Context (SEooC)	 19
7.1	 Definition of a SEooC	 19
7.2	 SEooC properties	 19
7.3	 How to use a SEooC in a project	 19
7.4	 SEooCs and deactivated code	 20

8	 Confidence in the Use of Software Tools	 22
8.1	 Motivation	 22
8.2	 Analysis and classification of software tools	 22
8.3	 Qualification of software tools	 25

9	 Participating Companies	 26



4

1	 Objectives of this Guideline

This guideline provides lessons-learned, experiences 

and best practices related to the application of 

ISO 26262 for the development of software. Please 

note that the guidelines given are of general nature 

and do not replace a thorough consideration of the 

project specific development regarding achievement 

of “Functional Safety” considering ISO 26262.

2	 Overview

This guideline is intended to be maintained and 

extended. The current version addresses the follow-

ing aspects:

•	 Definition of terms used in the context of “Func-

tional Safety” and software development.

•	 Guidance for safety concepts and architectures 

for safety-related software.

•	 Guidance for software safety analyses on software 

architecture level.

•	 Classification and qualification of software tools 

used in the development of embedded software.

•	 Remarks on the relevance of ISO 26262.

•	 Guidance for using Software SEooC.

•	 What does compliance mean?



5

3	 Explanation of Terms

The following explanations include terms used in this 

document. The explanations are intended to ease the 

common understanding.

Term Description

QM software

Software that is not developed according to ISO 26262 ASIL A, to D but still the software is developed according a 
well-defined process (e. g. an ASPICE compliant process). QM software must not be used to realize safety-related 
functionalities and special consideration is needed if QM software is integrated in an ECU that realizes safety-related 
functionalities.

Silent software
“Silent software” is a term used to describe software that does not interfere with other software with respect to mem-
ory access (e. g. range-check of index values, verification of pointer access) under the conditions defined in the Safety 
Manual. “Silent” software does not fulfill specific safety-related functions.

Implicitly safe

“Implicitly safe” is a term used to describe software that is silent software with additional dedicated timing properties 
(e. g. with respect to execution time, deadlocks and robustness with respect to input signals) under the conditions 
defined in the Safety Manual.
“Implicitly safe” software does not fulfill specific safety-related functions.

Safety manual
A Safety Manual describes constraints and required activities for the integration and/or usage of elements that have 
been developed and prequalified acc. ISO 26262 as Safety Element out of Context.

Safe, safety,
explicitly safe

“Safety/safe/explicitly safe software” is a term used to describe software that fulfills specific safety- 
related requirements under the conditions stated in the safety manual.

“Trusted mode”, system
mode, privileged mode,
supervisor mode

CPU mode for executing software with full access to the hardware features of the microcontroller. Software executed 
in this mode poses a higher risk and should be treated as such (e. g. development according to required ASIL includ-
ing the implementation of appropriate safety measures).

Safety-related
functionality

A functionality that realizes safety requirements.

Table 1: Explanations of terms used in this document



6

ISO 26262 is the recognized standard for functional 

safety in Automotive. But it is not a harmonized 

standard and therefore not necessary for the CE 

mark. ISO 26262 is also not an EU or UNECE direc-

tive or regulation and is therefore no prerequisite 

for vehicle homologation. Nevertheless, there are 

many reasons for implementing ISO 26262: In the 

European Union all products for end users must be 

safe according to the General Product Safety Direc-

tive 2001/95/EC. The corresponding German law is 

the Produktsicherheitsgesetz and other countries 

have similar laws. The German Produkthaftungs-

gesetz pledges the car manufacturers to compensate 

damage if they cannot prove that their product was 

developed according to state-of-the-art techniques 

and methodologies. In cases of gross negligence or 

intent persons can be culpable in person. Car man-

ufacturers and suppliers face financial compensa-

tion, loss of reputation, loss of insurance protection, 

and even prison in cases of unsafe products. Strictly 

taken, only a judge in a court case can decide if ISO 

26262 was necessary. Until then we must assume 

that it is necessary. Full compliance with ISO 26262 

is typically considered to be the minimum neces-

sary to fulfil state-of-the-art in respect to functional 

safety. It can, however, not generally be considered 

to be sufficient for product safety.

In addition to all that, most contracts given to elec-

tronic suppliers in Automotive do explicitly call for 

compliance with ISO 26262. Non-compliance would 

therefore be a breach of contract.

The conclusion from all this is that compliance with 

ISO 26262 is necessary!

What does compliance mean?

How is compliance determined? It is based on evi-

dence supporting confidence in the achieved func-

tional safety. Verbal statements are not enough. And 

it is based on an accepted safety case and (for higher 

ASILs) functional safety assessment, with independ-

ence graded by ASILs. Such an assessment needs to 

include confirmation reviews and functional safety 

audits.

Relevant confirmation reviews for software develop-

ment are the software parts of:

•	 Safety plan

•	 Safety analyses

•	 Safety concept

•	 Safety case

Auditing aims at confirming that the safety plan and 

all processes specified by ISO 26262 are actually 

implemented and the company lives up to them.

Assessments are also based on verification reviews. 

Relevant for software development are review 

reports of:

•	 Software safety requirements

•	 Hardware-software interface requirements

•	 Software architectural design

•	 Software units

•	 Software integration

•	 Software component qualification

•	 Safety analyses and dependent failure analyses 

on software architectural level

When is compliance needed? The answer is: Always 

when there is a risk for human health, e. g. when 

testing pretest vehicles, at release for production, 

during operation, and during and after service and 

repair. In most cases compliance is not necessary for 

lab samples.

Who determines compliance?

•	 In a first step this is done by reviewers. They are 

typically project members other than the author, 

examining work products for achievement of the 

intended ISO 26262 work product goal.

•	 In a second step this is done by auditors, e. g. 

persons from the quality department having 

a functional safety specific qualification. They 

examine the performed activities and imple-

mentation of processes for functional safety for 

achievement of the process-related ISO 26262 

objectives.

•	 Finally, this is the safety assessor. He/she exam-

ines safety planning, safety processes, safety 

measures, safety objectives, and the safety case 

for judging whether functional safety is achieved. 

Doing so he/she typically relies on audit and 

review results. The safety assessor must be a 

person with enough independence (graded by 

ASILs) from the development team. Note that 

no assessor qualification scheme has been 

established. The industry relies on experience 

and reputation of assessors. There is also no 

accreditation scheme for assessing companies 

required or expected by OEMs. A best practice 

is involving the assessor early in the project in 

order to reduce the risk of late non-compliance.

•	 The OEM is likely to scrutinize all functional 

safety related prerequisites and activities very 

thoroughly.

4	 The Relevance of ISO 26262



7

How to determine compliance? What are the crite-

ria for a safety assessor to determine compliance? 

The main criteria are the objectives of the clauses 

of ISO 26262. These objectives must be achieved.

There are objectives that are more technical and oth-

ers that are more process related. Examples:

•	 The more technical objective of the software unit 

design and implementation clause is to imple-

ment software units as specified.

•	 The more process-related objective of the 

software unit verification clause is to provide 

evidence that the software detailed design and 

the implemented software units fulfill their 

requirements and do not contain undesired 

functionality.

Besides objectives ISO 26262 does contain require-

ments and work products. Work products are results 

of fulfilling requirements. Fulfilled requirements are 

indicators for achievement of objectives. Require-

ments are useful especially as a basis for process 

steps and for checklists. Requirements may be pro-

cess-related and/or technical. Examples for how to 

fulfill requirements:

•	 Technical example: Software safety mechanisms 

need to include mechanisms for error detection. 

An example of such a mechanism is a range 

check of input data.

•	 Process example: A suitable programming lan-

guage is required. A process-related practice is 

to define a coding guideline and to use a MISRA 

checker (automatically at check-in) that assures 

compliance with the guideline.

•	 Process example: Safety requirements shall be 

traceable. Using a suitable requirements man-

agement tool is a best practice.

An assessor needs to judge whether requirements 

are fulfilled and whether work products comply with 

their ISO 26262 requirements. Fulfilled ISO 26262 

requirements are an indication for achievement of 

objectives.

Upon an assessment the requirements correspond-

ing to the objectives, the state-of-the-art regarding 

technical solutions and the applicable engineering 

domain knowledge are considered. The assessor is 

supposed to recommend acceptance of a product 

development if the assessor is convinced that func-

tional safety is achieved. The assessor will only rec-

ommend acceptance if the assessor is convinced that 

all objectives of ISO 26262 are fulfilled. Therefore, 

work on a clear, understandable and convincing 

chain of argumentation and document it in the 

safety case.



8

5	 Software Safety Concepts and Architectures

5.1	 Introduction
In this section different software safety concepts are 

depicted, and some hints are given to decide for the 

appropriate safety concept depending on the condi-

tions in a specific development project.

Often many of the functionalities and properties of 

ECU software are not safety-related, but only a part 

of them. Only those software elements that contrib-

ute to the implementation of safety requirements are 

considered safety-related.

To implement a mix of safety-related and non-safe-

ty-related functionalities there are two fundamental 

design options mentioned in ISO 26262:

•	 Develop a design in which such a mix can coexist. 

This is often called “Mixed ASIL Design” and is 

a typical approach if the portion of safety-related 

functionalities is rather small or third-party or 

QM software needs to be integrated.

or

•	 Develop the complete ECU software in conform-

ance with the “Maximum ASIL” assigned to any of 

the safety-related functions within the ECU. This 

is often called “Maximum ASIL Design” and the 

typical approach if the portion of safety-related 

functionalities is rather large.

Figure 1 depicts different ECU types holding software 

elements with and without related safety require-

ments and illustrates these two design patterns.

Both design options must focus on the same goal: 

To achieve the necessary integrity of the safety func-

tions. The level of integrity expresses the degree of 

trust you can have that a software will provide the 

stated functions and properties as demanded under 

specified conditions.

Figure 1: Mapping of software safety requirements to ECUs

SW Safety Requirements

Software Elements

ECU Software

Mixed ASIL
Design

Maximum ASIL
Design

QM QM QM

QM ASILASILASIL

QM

QM QM

ASILASIL ASIL

ECU 1 ECU 2 ECU 3 ECU 4



9

Necessary integrity can be achieved in two ways: 

One is to prevent that the software contains errors 

which lead to a malfunctioning behavior. Another is 

to include technical measures that are able to detect 

and control such a malfunctioning behavior.

In a “Mixed ASIL Design” the elements do not all 

have the same integrity based on their specific 

development goals. If they are integrated into one 

software without further measures, the integrity of 

the complete software cannot exceed that of the ele-

ment with the lowest integrity, like the weakest link 

of a chain.

To achieve a higher degree of overall integrity one 

must provide evidence that the elements with a lower 

integrity are not able to interfere with the elements 

of the target ASIL which is called “achieving Freedom 

from Interference”. There are two principles to argue 

“Freedom from Interference”:

•	 Detect that an interference has occurred and 

mitigate the effects

•	 Prevent that an interference occurs

Detection and mitigation is sufficient if the resulting 

(degraded) functional behavior of the software can 

still ensure “Functional Safety” (e. g. achieve and 

maintain a safe state).

In a “Maximum ASIL Design” all elements have the 

same integrity. When integrating such elements, 

in principle the complete software has the same 

integrity and does not require an examination for 

Freedom from Interference. Nevertheless, the safety 

analysis at software architectural level may reveal 

weaknesses which have to be addressed (e. g. by 

technical measures) in order to achieve confidence 

in “Functional Safety”.

The following sections describe the two approaches 

in further detail. Since software architectures accord-

ing to AUTOSAR are more and more used it is men-

tioned which contribution AUTOSAR features could 

provide.

5.2	 “Mixed ASIL Design”
A “Mixed ASIL Design” targets the development of 

software elements according to QM or a lower ASIL 

without jeopardizing the integrity of the entire soft-

ware system, which may have a higher ASIL. It may 

also enable the containment of errors in a partition.

This concept requires a suitable software design on 

application level, i. e. functional blocks must be 

coherent and unwanted interlinking between func-

tional blocks (e. g. via global variables) should be 

avoided. It also requires a safety mechanism realiz-

ing the freedom from interference on hardware and 

software level which ensures that a software element 

with a lower ASIL cannot interfere with a software 

element with a higher ASIL. This mechanism must be 

able to either prevent that a malfunction of one ele-

ment leads to the malfunction of another element, 

or it must be able to detect such interference and to 

mitigate the effects in time. This safety mechanism 

has to be developed according to the “Maximum 

ASIL” of the software safety requirements realized on 

this ECU.

ISO 26262 mentions different aspects of possible 

interferences:

1.	Memory, which includes the RAM as well as the 

CPU registers

2.	Timing and executions, which refers to blocking 

of execution, deadlocks and livelocks or the 

incorrect allocation of execution time in general

3.	Communication, summarizing all possible errors 

that could occur in the communication between 

software elements both within the ECU and across 

ECU boundaries.

The separation between “QM or lower ASIL” and 

“Maximum ASIL” elements provides the following 

benefits:

•	 Development methods for “Maximum ASIL” only 

have to be applied for safety-related software 

elements (which includes the elements ensuring 

the freedom from interference). This allows the 

reuse of existing QM software (e. g. third-party 

software), as long as it is not safety-related.

•	 Propagation of failures between software 

elements of the same ASIL can be prevented 

or detected, although it is not mandated by 

Freedom from Interference. However, this also 

supports the separation of safety-related parts 

with high availability requirements from other 

parts in fail-operational architectures.

•	 Some failures caused by hardware defects can 

also be prevented or detected (e. g. timing super-

vision will detect a faulty clock source).



10

On the other hand, the following disadvantages have 

to be taken into account when applying the “Mixed 

ASIL Design”:

•	 The separation adds additional complexity to the 

software design. Especially in legacy software 

safety-related and non-safety-related functional 

blocks are often tightly coupled, which requires 

additional effort for a software architecture 

redesign.

•	 The safety mechanism to ensure “Freedom 

from interference” may result in a performance 

penalty during runtime (e. g. for reprogramming 

the MPU and context switching). To reduce these 

penalties to a minimum, the interaction between 

the software elements that are separated by 

freedom from interference mechanisms needs to 

be as low as possible.

5.3	 “Maximum ASIL Design”
The “Maximum ASIL Design” has its advantages in 

use cases where a high share of the software provides 

safety-related functionality. In this approach, both 

the safety-related and the non-safety-related func-

tions follow the development process of the high-

est ASIL in the system. For the non-safety-related 

software elements, the coexistence argumentation 

follows a process argumentation: if those software 

elements are developed in the same stringent way 

applying the same process methods as the safety- 

related software elements, the coexistence of the 

elements is possible without further technical sep-

aration measures. The only difference between the 

non-safety-related and the safety-related software 

elements is then the necessary safety analysis for the 

latter.

Compared to the “Mixed ASIL Design” this approach 

gives the following benefits:

•	 No additional complexity for development of a 

partitioning concept.

•	 No performance penalty due to safety mecha-

nisms ensuring Freedom from Interference.

•	 Improved quality also for the non-safety-related 

software components which leads to a higher 

availability of the system.

On the other hand the following disadvantages have 

to be considered:

•	 The development effort increases since all soft-

ware elements have to be developed according to 

the highest ASIL. For the non-safety-related part 

an additional safety requirement is then applied, 

which requires the non-interference (“silence”) 

with the safety-related part.

•	 As ASIL development does not mean that the 

software is error free, errors in these parts are not 

prevented to propagate by design.

•	 Inclusion of third-party software (e. g. “black-

box” software) is more difficult, as the develop-

ment process of these modules is often unknown 

or cannot be influenced.

5.4	 Mechanisms to realize freedom 
from interference
The following paragraphs contain suggested protec-

tion mechanisms for different kinds of fault classes 

in the data and control flow domain, which includes 

faults listed in Annex D of ISO 26262 part 6. Data 

faults are either related to global data, to data resid-

ing on the execution stack, or to data received by QM 

software components (SWCs). Additionally, hardware 

register faults constitute a special kind of data faults. 

Control flow faults are either related to timing faults 

or to interrupt faults. Faults due to illegal references 

can have an effect on either the data or the control 

flow domain.

Please note: The following list includes mechanisms 

sufficient for typical ASIL A or B projects, but it 

also shows additional mechanisms that can also be 

used for higher ASILs. Especially those mechanisms 

required for higher ASILs are typically supported by 

AUTOSAR Basic Software features.

Fault class: “Global Data Faults”

There are several options to address this fault class:

1.	By partitioning the available RAM memory space 

in QM and ASIL parts and cyclically verifying a 

memory marker in between (initialized to a spe-

cific pattern), the probability to detect a relevant 

buffer overflow originating in QM software is 

increased.

2.	To protect safety-related data without using an 

MPU, double inverse storage concepts can be 

employed to detect accidental overwrites by QM 

software by comparing the original variables 

to bit-inverse shadow copies upon reading or 

cyclically (as long as the fault tolerance time is 

considered). If a larger set of data is not written 

frequently, memory-efficient checksums can be 

used to detect accidental modifications of data 

parts. This protects against QM data pointer cor-

ruptions and QM buffer overflows, both resulting 

in writes to ASIL data.



11

3.	To protect against accidental overwrites the 

CPU’s memory protection unit (MPU) can be used 

together with an allocation of tasks to separate 

partitions. In AUTOSAR, it is the responsibility 

of the Operating System to handle the MPU and 

thereby to ensure a proper separation between 

the entities. This is typically required for ASIL C 

and D but can also be useful or even required for 

lower ASILs.

Fault class: “Stack Faults”

There are several options to address this fault class:

1.	By using a stack range check that checks whether 

the current stack pointer is in range of the 

allocated stack memory, the probability to detect 

a stack overflow or underflow by QM software 

modifying the stack pointer can be increased. 

Such a stack check can be implemented cyclically 

or – in most cases even better – in context of a 

task switch.

2.	Additionally, stack overflows and underflows can 

be detected by checking memory markers (ini-

tialized to a specific pattern) placed above and 

below the allocated stack memory, which detects 

a subset of stack faults. This feature is also part 

of the AUTOSAR Operating System. Please be 

aware that this mechanism cannot detect stack 

overflows that do not overwrite the memory 

markers.

3.	The stack can also be protected by a hardware 

MPU which actually prevents all stack faults. This 

is typically required for ASIL C and D but can also 

be useful or even required for lower ASILs.

Fault class: “Less Reliable QM Data Quality”

If data that is relevant to safety-related ASIL calcu-

lations is routed through QM software parts (e. g., 

drivers or communication stacks that process hard-

ware input) that could corrupt data, there are several 

options to address this:

1.	A single sporadic fault can be detected via a 

plausibility check. Such a plausibility check can 

use either values from other sources or previous 

values from the same source as an additional 

input. For instance, receiving a speed value of 

0 km/h after having received one of 100 km/h 

in the previous CAN message 20 ms before is 

not plausible. Please note that the detection 

probability depends strongly on the assumed 

fault model.

2.	Alternatively, and with a higher detection 

probability, end to end protection checksums and 

signal alive checks can be used. The AUTOSAR 

end-to-end protection modules have been speci-

fied for this purpose.

Fault class: “Hardware Register Faults”

To protect against QM software parts accidentally 

modifying hardware register state that is safety-re-

lated, there are several options:

1.	Some microcontrollers offer locks for selected 

configuration registers or configurable write-once 

semantics, which should be used.

2.	A cyclic check of the current hardware state 

against the expected state as held in software 

can be performed to detect faults as long as the 

fault tolerance time is considered.

3.	Use a pro-active recovery mechanism that 

periodically rewrites the expected register states 

(assuming single bit flips as fault model).

4.	The strongest mechanism is the protection of 

memory mapped registers via the MPU. Some 

CPUs also provide a Peripheral Protection Unit 

for this task. This is typically required for ASIL C 

and D but can also be useful or even required for 

lower ASILs.

Fault class: “Timing and Execution Faults”

To protect against QM software significantly delaying 

or even blocking ASIL software execution, there are 

several options:

1.	Hardware or software watchdogs can be used. 

These should either be configured in a window 

mode, or they should regularly be triggered at 

the end of its deadline to detect delays as early 

as possible.

2.	Depending on the scheduling scheme employed 

in the basic software operating system, overflows 

of time slices or task overruns can be detected. 

This is also a feature of the AUTOSAR Operating 

System.

3.	The strongest mechanism that also detects fault 

in the program logic is the supervision of the 

program flow in combination with time stamps. 

This is also a feature of the AUTOSAR Watchdog 

Stack and is typically needed only for ASIL C and 

D.

Fault Class: “Interrupt Faults”

To protect against the fault that global interrupts or 

ASIL interrupt sources are permanently disabled by 

QM software parts, both properties can be checked 

cyclically to be enabled in an assertion.



12

To protect against QM Interrupt Service Routines 

executing at higher rate than expected, which will 

delay or even block the execution of ASIL ISRs, two 

measures can be taken:

1.	If possible, from the real-time scheduling point 

of view, ASIL ISRs should be given a higher prior-

ity compared to QM ISRs.

2.	As a monitoring measure, the arrival rate of 

QM ISRs can be monitored to be in range of the 

expected rate. This is also a feature of the AUTO-

SAR Operating System.

Fault class: “Illegal References”

By referencing ASIL symbols, QM software could 

include code that writes to protected ASIL data or 

executes protected ASIL functions. This misbehavior 

can be protected against by partitioning the software 

in the design phase. By explicitly denoting ASIL data 

and function declarations that are legal to be ref-

erenced from within QM software parts in an ASIL/

QM interface header, this design by contract can be 

proven in an automated way. An example approach 

would be to implement the interface header in a 

dummy module and link it to the QM software parts. 

The linker will then report undefined references 

from QM to ASIL software parts, which states an 

illegal interference. This proof is especially impor-

tant when integrating QM third-party code, and the 

explicit interface can additionally be used to inte-

grate plausibility checks when transitioning from/to 

QM software (see also fault class “less reliable QM 

data quality”).



13

6	 Safety Analyses on Software Architectural Level

6.1	 Introduction
A safety analysis on software architectural level is 

required by ISO 26262-6:2018 Clause 7.4.10. There 

is only little information on how to perform such an 

analysis. There are only few requirements the anal-

ysis needs to fulfill that are specified in ISO 26262-

9:2018 Clause 8. Annex E of ISO 26262-6:2018 

explains the application of such an analysis. The 

following section intends to give guidance on how a 

safety analysis on software architectural level can be 

performed. Moreover, the suggested methodology is 

visualized in an example.

ISO 26262 defines the purpose of the safety analysis 

on software architectural level as to:

•	 Provide evidence for the suitability of the 

software to provide the specified safety-related 

functions and properties with the integrity as 

required by the respective ASIL,

•	 identify or confirm the safety-related parts of the 

software and

•	 support the specification and verify the effective-

ness of the safety measures.

A safety analysis on the software architectural level 

is intended to complement analyses on the hardware 

level and on the system level. 

The software architectural level is defined in ISO 

26262-6:2018 Clause 7.4.5. It comprises the static 

and dynamic aspects of the interaction of software 

components. The static aspects describe the hier-

archy of software components, and the interfaces 

and dependencies between them. Usually the static 

aspects are modelled using e. g. a UML Class Dia-

gram. The dynamic aspects should depict the data 

and control flow between software components. Usu-

ally, the assignment of functions of software com-

ponents to tasks and partitions is defined. Dynamic 

aspects can be modelled using e. g. a UML Sequence 

Diagram.

The software architecture does not describe the 

inner processing of software units. This is part of 

the detailed design of a software unit. During the 

safety analysis on the software architectural level, 

only the externally visible failure modes of the inner 

workings of a software unit are considered. It is not 

the intention of the presented methodology to ana-

lyze the details of a single software unit. Code level 

safety analyses are not considered appropriate since 

the effect of faults on unit level can well be analyzed 

on architectural level.

The software architecture is a prerequisite for the 

safety analysis on software architectural level. It is 

typically performed in iterations: An initial software 

architecture is available, and the safety analysis is 

performed possibly leading to improvements of 

mechanisms and architecture. The safety analysis is 

then updated in turn with the software architecture. 

Care must be taken that assumptions and conclu-

sions in the safety analysis are not invalidated by 

changes in the software architecture.

6.2	 Methodology
The proposed safety analysis on software architec-

tural level comprises the following steps:

1.	Identify the software safety requirements for the 

elements of the software in scope.

2.	Identify failure modes of the elements of the 

software.

3.	Identify the impact on each allocated safety 

requirement.

4.	Identify the potential causes for the failure 

modes.

5.	Identify, analyze and improve safety measures

6.2.1	 Software Safety Requirements and 

Elements in Scope

After all prerequisites are met, define the scope, 

i.e. the software safety requirements and the ele-

ments of the software architecture that are subject 

to analysis. Elements of the software architecture are 

typically software components and units, i.e. parts 

of software that are grouped together to achieve a 

defined functionality.

6.2.2	 Failure Modes

The failure modes of an element of the software 

architecture depend on the element itself. Failure 

modes should be identified using guide words that 

have been adapted to the software elements. ISO 

26262-6:2018 Table E.1 already suggests a basis 

for such guide words (“too late”, “too early”, “too 

often”, “too rare”, “not at all”, “out of sequence”, 

“unintended activation”, “stuck-at”, “too high”, 

“too low”). These kinds of guide words are helpful 

for data driven control applications, like many auto-

motive applications are.

The failure modes should be described as precise as 

possible, e. g. instead of “Signal XYZ is too high” 

use “Signal XYZ is more than A”, where A is a value 

above which a different behavior of the software is 

expected.



14

Completeness of the failure modes of a software 

element must be judged by the experts performing 

the safety analysis. The set of guide words supports 

achieving completeness of failure modes.

6.2.3	 Impact on Safety Requirements allo-

cated to the Software

Typically, safety analyses on system and hardware 

level use FMEA-like methods with a risk priority 

number (RPN) or similar mechanism. However, this 

assumes a stochastic model when things fail. This is 

valid for hardware, because it wears out over time. 

Software does not fail with a certain probability. A 

fault in a software element either leads to the vio-

lation of a safety requirement or it does not. As a 

first rule, if the failure of a software element violates 

a safety requirement, a measure must be imple-

mented.

6.2.4	 Potential Failure Causes

For each failure mode the causes that could lead to 

this failure mode must be documented. Knowing the 

potential cause of a failure mode helps to identify 

appropriate mitigations, e. g. a software implemen-

tation fault may be mitigated via a special code 

review (see ISO 26262-9:2018 Clause 8.4.9).

6.2.5	 Safety Measures

There are typically different kinds of safety measures 

that aim to mitigate the failure of a software ele-

ment:

•	 Additional safety mechanism

Adding a safety mechanism is the technical solu-

tion to an issue detected during the safety anal-

ysis.

This might comprise the creation of a new soft-

ware safety requirement.

Example: Add check in component XYZ to limit 

value DEF.

•	 Requirements on the size, complexity and 

development process of a software element

Sometimes there is no adequate mechanism pos-

sible and the software element must work as spec-

ified.

This is considered arguable if the element is lim-

ited in its size and complexity. No exact limits of 

size and complexity are provided here, since this 

is a decision that must be made based on cor-

porate standards, customer collaboration and/or 

external assessment within a project.

See also the SteeringColumnLockSwitch compo-

nent in the example below.

•	 Requirements on the user of the software

Some issues that are detected during the safety 

analysis on software architectural level, cannot be 

resolved on this level. They need to be addressed 

to the user of the software. The user might e. g. 

be the user of a software safety element out of 

context or the system incorporating an ECU run-

ning software.

6.2.6	 Common Pitfalls

When performing a safety analysis on software 

architectural level there are some common pitfalls 

that should be avoided:

•	 Safety mechanism for safety mechanism when 

iteratively performed

If the safety analysis is performed in iterations 

and additional safety mechanisms have been 

introduced in the first iterations, care must be 

taken:

•	 Not to introduce additional safety mechanisms 

when analyzing existing safety mechanisms, 

and

•	 to show what is added in the analysis for an 

increment.

•	 Too detailed analysis

The safety analysis on software architectural level 

does not replace a detailed verification of the 

detailed design and code of a software compo-

nent. It focuses on the interfaces between soft-

ware components and units.

•	 Inconsistent software architecture

The safety analysis on software architectural level 

is usually performed on a model, e. g. a UML 

model. It must be ensured that this model is con-

sistent with the implemented software architec-

ture. This consistency check is out of scope of the 

safety analysis.

6.2.7	 Example

Figure 2 exemplarily shows a safety requirement and 

derived software safety requirements for a steering 

column lock. For this example, it is assumed that 

random hardware faults (incl. transient faults) are 

covered by adequate hardware mechanisms like 

lock-step CPU and memory with ECC protection.

At first the static part of the software architecture is 

described together with the allocated requirements 

(see Figure 3).



15

Figure 2: Safety Requirements

Figure 3: Logical View (Before SW Safety Analysis)



16

Vehicle speed is received via the in-vehicle network 

from a different ECU. Direct I/O by software is not 

depicted for simplicity reasons. However, if software 

has interfaces to the hardware, the Hardware-Soft-

ware Interface (HSI) provides valuable input to the 

software safety analysis. In this case, random hard-

ware faults must be considered in detail, e. g. bit flip 

of a digital I/O register value

In a second step the dynamic parts (see Figure 4) of 

the software are described. For simplicity reasons the 

complete software is executed on a single, periodic 

task without any interrupts. Real systems are usually 

way more complex in their dynamic behavior.

As the software architecture is now complete, the 

safety analysis on software architecture can be 

started. For each element of the software architec-

ture the failure modes are evaluated. Each failure 

mode is then evaluated in the context of each safety 

requirement. If a negative impact is detected, a 

safety measure is defined. It is suggested to track 

defined measures in the planning tool used, and 

only reference the item from the safety analysis. If 

a safety measure is a development-time measure, it 

should be specific for the respective failure mode, 

e. g. name a concrete test case that verifies that a 

certain failure mode does not exist.

A table-based form of documentation was chosen for 

this example. However, other forms may be applica-

ble as well.

Figure 4: Dynamic View



17

Safety 
Require-
ment

Software 
Architectural 
Element

Failure Mode Effect & 
Rationale

Impact With-
out Safety 
Measure

Potential 
Cause of 
Failure Mode

Safety Meas-
ure

SR1 RequestLockPre-
processing

RequestLock is 
unintendedly true

SteeringColumn-
Locker engages 
steering column 
lock only if vehicle 
is not moving and 
thus in a safe state

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 RequestLockPre-
processing

RequestLock is 
unintendedly false

Steering col-
umn lock is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 VehicleSpeedPro-
cessing

VehicleSpeed is 
zero even though 
real vehicle speed 
is not zero

The steering 
wheel lock switch 
is engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM1

SR1 VehicleSpeedPro-
cessing

VehicleSpeed is 
not zero even 
though real vehicle 
speed is zero

Steering column 
lock switch is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 SteeringColumn-
Locker

LockSteeringCol-
umn is unintend-
edly locked

Steering column 
lock switch is 
engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM2

SR1 SteeringColumn-
Locker

LockSteeringCol-
umn is not locked 
even though 
intended

Steering col-
umn lock is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 SteeringColumn-
LockSwitch

SteeringColumn-
LockSwitch is unin-
tendedly locked

Steering column 
lock switch is 
engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM3

SR1 SteeringColumn-
LockSwitch

SteeringColumn-
LockSwitch is 
not locked even 
though intended

Steering column 
lock switch is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

Table 2: Example Software Safety Analysis



18

ID Safety Measure

SM1 Add new SW Safety Requirement to VehicleSpeeedProcessing: VehicleSpeedProcessing 
must only pass VehicleSpeed zero if end-to-end protection (incl. sequence counter and 
CRC) check passed.
This safety mechanism must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.
Signal must be provided with ASIL D at input interface => feedback to system level.
(This mechanism also covers random hardware faults that are not in scope of this analy-
sis.)

SM2 SteeringColumnLocker must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.

SM3 SteeringColumnLockSwitch must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.

Table 3: Example Safety Measures

Figure 5: Logical View (After SW Safety Analysis)

The safety analysis leads to a new software archi-

tecture (see changes in red) implementing an addi-

tional software safety requirement “Set VehicleSpeed 

only to zero if validity of received value is ensured.”. 

Assurance here could e. g. be achieved using end-

to-end protection of the vehicle speed signal. The 

safety analysis has also confirmed the sensible allo-

cation of the other software safety requirements.

The methodology presented above is considered to 

be compliant to ISO 26262-6:2018 Annex E.



19

In software development, a safety element out of 

context (SEooC) is a generic software component that 

fulfills safety requirements of a system, although it 

has been developed without knowledge of the final 

system. Its development is based on assumptions on 

the use-cases it can fulfill and on the context it will 

be integrated into. Consequently, the incorporation 

of a SEooC into system development is a non-trivial 

task. This chapter outlines:

•	 What a SEooC is,

•	 what the properties of a SEooC are, and

•	 how a SEooC can be incorporated into a project.

Although hardware SEooCs are also in scope of the 

ISO 26262, this guideline focuses on software as 

SEooC. This section only discusses the usage of a 

SEooC, the development of a SEooC is out of scope. 

The SEooC is described in ISO 26262, Part 10, 

Clause 9.

7.1	 Definition of a SEooC
A SEooC is a stand-alone element that implements 

assumed safety-related functionality and that is 

intended to be used in different safety-related sys-

tems. It can thereby be a system, a sub-system, an 

array of systems or a hardware or software compo-

nent. As it is developed out of context, i.e. not in the 

scope of the target system, it is not an item accord-

ing to ISO 26262. Examples for typical SEooCs are 

microcontrollers or generic software components 

like AUTOSAR components or protocol stacks, which 

can provide safety-related functionality that can be 

reused without modification in different projects and 

systems.

As the developers of the SEooC do not know the 

precise context of the target system, they employ 

assumptions on the SEooC’s usage and the environ-

ment in which it is going to be integrated. Therefore, 

safety requirements need to be assumed as input 

for the SEooC development. These requirements 

are documented and provided to the SEooC user as 

“assumed safety requirements”.

In addition, during development, the SEooC pro-

vider may assume conditions to be fulfilled by the 

SEooC user. All such assumptions must be commu-

nicated to the SEooC user as well, e. g. as so called 

“assumptions of use”. The fulfillment of the assumed 

safety requirements of the SEooC is only given if all 

the applicable assumptions of use are satisfied. The 

SEooC provider lists the “assumed safety require-

ments” and the “assumptions of use” in the safety 

manual of the SEooC.

The safety case for the SEooC, i.e. the argumenta-

tion and evidences for the fulfillment of the assumed 

safety requirements, are created by the SEooC pro-

vider.

7.2	 SEooC properties
The assumed safety requirements that a SEooC pro-

vides and implements have an ASIL allocation desig-

nated from the SEooC provider. This means that the 

SEooC user can rely on the specified functionality 

up to the defined ASIL and that the SEooC provider 

performed the necessary verification and analysis 

activities with the required rigor. However, this is 

only valid if the SEooC’s definition of the “assumed 

environment” matches the target system where the 

SEooC is going to be integrated.

The safety manual is an important collateral to 

the SEooC and must be carefully considered by 

the SEooC user. It documents the assumed safety 

requirements and the assumed target environment. 

The safety manual defines how the SEooC must be 

integrated into the target system and the necessary 

duty of care so that the assumed safety requirements 

are ensured.

From the target system’s perspective, a SEooC may 

bring non-required functionality, which the SEooC 

provider developed according to the specified ASIL, 

although it is not used in the user‘s project. This can 

be seen like configurable software.

The appropriate usage of the SEooC usually 

requires effort on user side during integration, 

e. g. execution of verification measures defined 

in the safety manual. This might be easily missed 

when considering the use of a SEooC.

7.3	 How to use a SEooC in a pro-
ject
How can a SEooC then be integrated into the target 

system? The following steps are mandatory for a suc-

cessful and safe integration:

•	 The SEooC user must verify that the SEooC’s 

assumed safety requirements match the specific 

safety requirements that have been derived from 

the system context.

•	 The SEooC user also must ensure that the SEooC’s 

assumptions of use are met.

7	 Usage of Safety Elements out of Context (SEooC)



20

•	 If both requirements cannot be achieved, the 

SEooC is either unsuitable for the target system 

or additional safety measures must be imple-

mented.

•	 Further safety requirements that cannot be 

fulfilled by the SEooC must be addressed within 

the project scope.

•	 To ensure safe operation of the SEooC, the SEooC 

user must adhere to the instructions of the safety 

manual. Violations of these instructions must be 

justified within the project scope.

The flow of these steps is illustrated in Figure 6. 

From the system’s safety goals, functional and tech-

nical safety requirements are derived. Typically, this 

happens in various steps, Figure 6 shows a simplified 

view of this process. There are usually also require-

ments which are not safety-related. In the end, there 

is a set of software safety requirements and non-

safety related software requirements. In Figure 6, 

the safety-related requirements are represented 

by the green circles and the non-safety related 

requirements by the blue circles. The SEooC user 

must match the software safety requirements to the 

SEooC’s assumed requirements. It can happen that 

the SEooC provides functionality which is not needed 

by the system. Typically, additional safety functional-

ity must be implemented in the software application 

as it is not provided by the SEooC. It is the SEooC 

user’s responsibility to ensure that the combination 

of the software SEooC and the remaining application 

do not violate the system’s safety goals.

7.4	 SEooCs and deactivated code
As a SEooC is developed without any knowledge 

about the target systems and builds on a set of 

assumed requirements, it is common that a SEooC 

contains code and functionality that is qualified for 

usage in safety-related systems, but not necessarily 

needed by the SEooC user’s requirements. There are 

now two contradicting viewpoints:

•	 From a user’s perspective, this may be undesired 

functionality.

•	 From the SEooC provider’s perspective, this is 

desired and qualified functionality.

Yet, ISO 26262 requires that this situation is dealt 

with: it states if during integration “[…] deactiva-

tion of these unspecified functions can be assured, 

this is an acceptable means of compliance with 

requirements.” (ISO 26262 -6 Clause 10.4.6).

How can the deactivation be ensured? Removal of 

the deactivated code, as for example necessary for 

aviation projects:

•	 Leads to a specific version for the SEooC user’s 

project, where certain functions are removed

•	 Loses the qualification aspect of the SEooC’s 

usage in various projects with different use cases

If code removal is not an option, the SEooC user 

can apply the following methods, which to a large 

extent are in the standard repertoire of safety devel-

opment methods, to ensure that deactivated code is 

not called:

•	 Control flow monitoring,

•	 ensure on application level that only necessary 

interface functions are called and that parame-

ters passed to used functions are correct,

•	 use dead code elimination by the compiler e. g. 

to ensure that unneeded library functions are not 

included into the binary,

•	 employ coverage analysis to verify that only 

intended interface functions of the SEooC are 

used.

In general, the SEooC user must argue that the situ-

ation is known and that the benefit of using a SEooC 

is higher than an individualized version. It must be 

ensured, for example by above listed methods, that 

the unneeded functionality is not used by the appli-

cation.



21

Figure 6: This figure illustrates schematically the mapping of system safety requirements to the assumed safety 

requirements of a software SEooC.

Safety Goals

Func�onal and Technical
Safety Requirements

Func�onal and Technical
Requirements

So�ware
Safety Requirements

So�ware
Requirements

SW Applica�onSW SEooC



22

8	 Confidence in the Use of Software Tools

8.1	 Motivation
Software tools play a major role in the implemen-

tation of processes and methods used during the 

development of safety-related systems, software and 

hardware.

Using tools can be beneficial because they enable, 

support or automate safety-related development 

activities (e. g. development and management of 

requirements or architectural designs, code gener-

ation, analyses, testing or configuration manage-

ment).

However, in case of a malfunctioning behavior such 

tools may also have adverse effects on the results 

of tool-supported development activities and thus on 

the “Functional Safety” achieved in the final product 

or its elements including software.

ISO 26262 provides an approach to achieve confi-

dence that using software tools does not jeopardize 

“Functional Safety”. This approach contains:

•	 Determination of single tools or tool chains which 

are relevant for safety-related activities and 

identification of the used functionalities and their 

purpose during development.

•	 An analysis to determine the required confidence 

for each relevant software tool, based on the risks 

related to the used functionalities and its role in 

the development process (“classification“).

•	 Measures to qualify a software tool, if the classifi-

cation indicates that this additional risk reduction 

is needed.

8.2	 Analysis and classification of 
software tools
This approach can be supported by the tool ven-

dor, e. g. by providing information such as generic 

analyses based on intended application use cases or 

test cases and test suites for tool qualification. The 

responsibility for using the tool in a suitable way 

remains with the user.

The following sections describe this approach in fur-

ther detail.

The risk related to the tool functionalities used for a 

specific purpose during development is determined 

by the tool´s impact and the possibility to detect mal-

functions yielding the aggregated tool confidence 

level (TCL):

1.	The tool impact (TI) expresses the possibility that 

a malfunction of a particular software tool can 

introduce or fail to detect errors in a safety-re-

lated item or element being developed.

•	 TI1: Shall be selected when there is an argu-

ment that there is no such possibility

•	 TI2: Shall be selected in all other cases

2.	The tool error detection (TD) expresses the con-

fidence that due to tool-internal or tool-external 

measures (e. g. subsequent process activities) 

relevant tool malfunctions producing erroneous 

output can be prevented or detected.

•	 TD1: High degree of confidence (that a 

malfunction and its corresponding erroneous 

output will be prevented or detected)

•	 TD2, TD3: Medium or low degree of confidence

The classification depends on the usage of the tool 

(e. g. used functionalities) as part of the complete 

development process.

Figure 7 shows the approach and table gives some 

examples. Please note that the specific workflow 

embedding the tool usage has to be considered.



23

Figure 7: Classification and qualification of software tools acc. ISO 26262

Used tool
functionalities
and their
purpose

TI2

TI1

TD3

TD2

TD1

TCL2

TCL1

TCL3

Tool
impact

Tool error
detection

Tool
confidence

level

Tool classification Tool qualification

ASIL

Qualification
methods for
TCL3

Qualification
methods for
TCL2

No qualification
required



24

Tool Use case Failure 
mode

TI Measures to detect 
or prevent mal-
functioning of tool

TD Rationale TCL Qualifi-
cation
needed

C-Code generator Generate C-Code 
from model

Incorrect transla-
tion from model 
to code

TI2 None TD3 Errors are not 
detected if no 
systematic tests are 
performed.

TCL3 Yes (TCL3)

Full verification of code 
with required coverage by 
tests, reviews and static 
code analysis

TD1 Errors are detected 
by verification.

TCL1 No

Full verification of code 
with code generator spe-
cific checker tool

TD1 Errors are detected 
by checker tool.

TCL1 No

Use redundant code gener-
ator and compare results

TD1 Failure of one tools 
will be detected by 
the other tool. Equal 
failure of both tools 
is unlikely

TCL1 No

Static code analy-
sis tool

Static code 
analysis

False negatives 
with respect to 
specified error 
class (e. g. array 
out of bounds for 
a bounds check-
ing tool)

TI2 None TD3 Other tests do not 
focus on this error 
class

TCL3 Yes (TCL3)

Configuration 
management tool

Checkout specific 
artifact version

Checkout of 
wrong artifact 
version

TI2 Artifact checksum verified 
against external database

TD1 Corrupted data and 
wrong artifact ver-
sion will be detected 
externally

TCL1 No

Artifact was 
corrupted

TI2 Artifact checksum verified 
against tool internal 
database

TD1 Corrupted data 
will be detected 
internally

TCL1 No

Table 4: Examples for tool classification



25

8.3	 Qualification of software tools
The resulting TCL may be reduced by improving the 

detection or avoidance measures (iterative tool anal-

ysis). As a consequence, alterations in the process 

(e. g. removal of a redundant tool in the tool chain) 

may invalidate the TCL argumentation.

Example: If an analysis shows that for the tool and its 

intended usage a TCL1 cannot be argued, there are 

at least two options:

•	 Lowering the TCL by improving the TD introduc-

ing additional detection or prevention measures 

into the development process (e. g. checking tool 

outputs) or into the tool itself.

•	 Performing a qualification of the tool according 

to the TCL for the target ASIL if lowering the TCL 

is not feasible or not efficient.

The quality of the documentation and the granular-

ity of the tool analysis require an adequate level of 

detail so that the resulting TCL is comprehensible, 

and the resulting TCL can be justified (Neither a very 

detailed investigation nor a rough general view is 

helpful).

For TCL1 classified software tools no qualification 

measures are required at all.

For TCL2 and TCL3, tool qualification measures pro-

vide evidence that justifies confidence in a software 

tool for its intended use cases in the development 

environment. The following measures are applicable 

depending on the TCL and target ASIL:

•	 Increased confidence from use.

•	 Evidence for a structured tool development 

process.

•	 Tool development in compliance with a safety 

standard.

•	 Validation of the software tool.



26

Participating companies in the 
“UG Software ISO 26262” working 
group:
Analog Devices GmbH

Bertrandt Ingenieurbüro GmbH

Brose Fahrzeugteile SE & Co.

Elektrobit Automotive GmbH

Elmos Semiconductor SE

Infineon Technologies AG

innoventis GmbH

Kugler Maag CIE GmbH

Mahle International GmbH

Marelli Automotive Lighting Reutlingen GmbH

Marquardt Service GmbH

Melecs EWS GmbH

Preh GmbH

OptE GP Consulting Optimize E Global Performance

STMicroelectronics Application GmbH

TDK Electronics AG

TE Connectivity Germany GmbH

vancom GmbH & Co. KG

Vector Informatik GmbH

Webasto SE

9	 Participating Companies



27



ZVEI - German Electrical and Electronic 
Manufacturers’ Association 
Lyoner Strasse 9 
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-0 
Fax: +49 69 6302-317 
E-mail: zvei@zvei.org 
www.zvei.org

So
ur

ce
: Z

VE
I


