
German Electrical and Electronic Manufacturers’ Association

Best Practice Guideline

Software for Safety-Related

Automotive Systems

Software
Automotive

Tool-QualificationISO 26262

Safety Manual

Functional Safety
ASIL Level

Requirements

Analysis & Classification

Tool Confidence Level
TCL



Imprint
Best Practice Guideline
Software for Safety-Related Automotive Systems

Publisher: 
ZVEI - German Electrical and Electronic 
Manufacturers’ Association 
Automotive – Electronics, Infrastructure & Software 
Lyoner Strasse 9 
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-276 
Fax: +49 69 6302-407 
E-mail: zvei-be@zvei.org 
www.zvei.org

Responsible: Dr. Stefan Gutschling

Dezember 2020 – Version 2.0

While every care has been taken to ensure the accuracy of this document, ZVEI assumes no liability for the 
content. All rights reserved. This applies in particular to the storage, reproduction, distribution and transla-
tion of this publication.



Table of Contents

1 Objectives of this Guideline 4

2 Overview 4

3 Explanation of Terms 5

4 The Relevance of ISO 26262 6

5 Software Safety Concepts and Architectures 8
5.1 Introduction 8
5.2 “Mixed ASIL Design” 9
5.3 “Maximum ASIL Design” 10
5.4 Mechanisms to realize freedom from interference 10

6 Safety Analyses on Software Architectural Level 13
6.1 Introduction 13
6.2 Methodology 13

6.2.1 Software Safety Requirements and Elements in Scope 13
6.2.2 Failure Modes 13
6.2.3 Impact on Safety Requirements allocated to the Software 14
6.2.4 Potential Failure Causes 14
6.2.5 Safety Measures 14
6.2.6 Common Pitfalls 14
6.2.7 Example 14

7 Usage of Safety Elements out of Context (SEooC) 19
7.1	 Definition	of	a	SEooC	 19
7.2 SEooC properties 19
7.3 How to use a SEooC in a project 19
7.4 SEooCs and deactivated code 20

8 Confidence in the Use of Software Tools 22
8.1 Motivation 22
8.2	 Analysis	and	classification	of	software	tools	 22
8.3	 Qualification	of	software	tools	 25

9 Participating Companies 26



4

1 Objectives of this Guideline

This guideline provides lessons-learned, experiences 

and best practices related to the application of 

ISO 26262 for the development of software. Please 

note that the guidelines given are of general nature 

and do not replace a thorough consideration of the 

project	specific	development	regarding	achievement	

of “Functional Safety” considering ISO 26262.

2 Overview

This guideline is intended to be maintained and 

extended. The current version addresses the follow-

ing aspects:

•	 Definition	of	terms	used	in	the	context	of	“Func-

tional Safety” and software development.

•	 Guidance for safety concepts and architectures 

for safety-related software.

•	 Guidance for software safety analyses on software 

architecture level.

•	 Classification	and	qualification	of	software	tools	

used in the development of embedded software.

•	 Remarks on the relevance of ISO 26262.

•	 Guidance for using Software SEooC.

•	 What does compliance mean?



5

3 Explanation of Terms

The following explanations include terms used in this 

document. The explanations are intended to ease the 

common understanding.

Term Description

QM software

Software that is not developed according to ISO 26262 ASIL A, to D but still the software is developed according a 
well-defined	process	(e.	g.	an	ASPICE	compliant	process).	QM	software	must	not	be	used	to	realize	safety-related	
functionalities and special consideration is needed if QM software is integrated in an ECU that realizes safety-related 
functionalities.

Silent software
“Silent software” is a term used to describe software that does not interfere with other software with respect to mem-
ory	access	(e.	g.	range-check	of	index	values,	verification	of	pointer	access)	under	the	conditions	defined	in	the	Safety	
Manual.	“Silent”	software	does	not	fulfill	specific	safety-related	functions.

Implicitly safe

“Implicitly safe” is a term used to describe software that is silent software with additional dedicated timing properties 
(e.	g.	with	respect	to	execution	time,	deadlocks	and	robustness	with	respect	to	input	signals)	under	the	conditions	
defined	in	the	Safety	Manual.
“Implicitly	safe”	software	does	not	fulfill	specific	safety-related	functions.

Safety manual
A Safety Manual describes constraints and required activities for the integration and/or usage of elements that have 
been	developed	and	prequalified	acc.	ISO	26262	as	Safety	Element	out	of	Context.

Safe, safety,
explicitly safe

“Safety/safe/explicitly	safe	software”	is	a	term	used	to	describe	software	that	fulfills	specific	safety- 
related requirements under the conditions stated in the safety manual.

“Trusted mode”, system
mode, privileged mode,
supervisor mode

CPU mode for executing software with full access to the hardware features of the microcontroller. Software executed 
in	this	mode	poses	a	higher	risk	and	should	be	treated	as	such	(e.	g.	development	according	to	required	ASIL	includ-
ing	the	implementation	of	appropriate	safety	measures).

Safety-related
functionality

A functionality that realizes safety requirements.

Table 1: Explanations of terms used in this document



6

ISO 26262 is the recognized standard for functional 

safety in Automotive. But it is not a harmonized 

standard and therefore not necessary for the CE 

mark. ISO 26262 is also not an EU or UNECE direc-

tive or regulation and is therefore no prerequisite 

for vehicle homologation. Nevertheless, there are 

many reasons for implementing ISO 26262: In the 

European Union all products for end users must be 

safe according to the General Product Safety Direc-

tive 2001/95/EC. The corresponding German law is 

the Produktsicherheitsgesetz and other countries 

have similar laws. The German Produkthaftungs-

gesetz pledges the car manufacturers to compensate 

damage if they cannot prove that their product was 

developed according to state-of-the-art techniques 

and methodologies. In cases of gross negligence or 

intent persons can be culpable in person. Car man-

ufacturers	 and	 suppliers	 face	 financial	 compensa-

tion, loss of reputation, loss of insurance protection, 

and even prison in cases of unsafe products. Strictly 

taken, only a judge in a court case can decide if ISO 

26262 was necessary. Until then we must assume 

that it is necessary. Full compliance with ISO 26262 

is typically considered to be the minimum neces-

sary	to	fulfil	state-of-the-art	in	respect	to	functional	

safety. It can, however, not generally be considered 

to be sufficient for product safety.

In addition to all that, most contracts given to elec-

tronic suppliers in Automotive do explicitly call for 

compliance with ISO 26262. Non-compliance would 

therefore be a breach of contract.

The conclusion from all this is that compliance with 

ISO 26262 is necessary!

What does compliance mean?

How is compliance determined? It is based on evi-

dence	supporting	confidence	 in	 the	achieved	func-

tional safety. Verbal statements are not enough. And 

it	is	based	on	an	accepted	safety	case	and	(for	higher	

ASILs)	functional	safety	assessment,	with	independ-

ence graded by ASILs. Such an assessment needs to 

include	 confirmation	 reviews	 and	 functional	 safety	

audits.

Relevant	confirmation	reviews	for	software	develop-

ment are the software parts of:

•	 Safety plan

•	 Safety analyses

•	 Safety concept

•	 Safety case

Auditing	aims	at	confirming	that	the	safety	plan	and	

all	 processes	 specified	 by	 ISO	 26262	 are	 actually	

implemented and the company lives up to them.

Assessments	are	also	based	on	verification	reviews.	

Relevant for software development are review 

reports of:

•	 Software safety requirements

•	 Hardware-software interface requirements

•	 Software architectural design

•	 Software units

•	 Software integration

•	 Software	component	qualification

•	 Safety analyses and dependent failure analyses 

on software architectural level

When is compliance needed? The answer is: Always 

when there is a risk for human health, e. g. when 

testing pretest vehicles, at release for production, 

during operation, and during and after service and 

repair. In most cases compliance is not necessary for 

lab samples.

Who determines compliance?

•	 In	a	first	step	this	is	done	by	reviewers.	They	are	

typically project members other than the author, 

examining work products for achievement of the 

intended ISO 26262 work product goal.

•	 In a second step this is done by auditors, e. g. 

persons from the quality department having 

a	functional	safety	specific	qualification.	They	

examine the performed activities and imple-

mentation of processes for functional safety for 

achievement of the process-related ISO 26262 

objectives.

•	 Finally, this is the safety assessor. He/she exam-

ines safety planning, safety processes, safety 

measures, safety objectives, and the safety case 

for judging whether functional safety is achieved. 

Doing so he/she typically relies on audit and 

review results. The safety assessor must be a 

person	with	enough	independence	(graded	by	

ASILs)	from	the	development	team.	Note	that	

no	assessor	qualification	scheme	has	been	

established. The industry relies on experience 

and reputation of assessors. There is also no 

accreditation scheme for assessing companies 

required or expected by OEMs. A best practice 

is involving the assessor early in the project in 

order to reduce the risk of late non-compliance.

•	 The OEM is likely to scrutinize all functional 

safety related prerequisites and activities very 

thoroughly.

4 The Relevance of ISO 26262



7

How to determine compliance? What are the crite-

ria for a safety assessor to determine compliance? 

The main criteria are the objectives of the clauses 

of ISO 26262. These objectives must be achieved.

There are objectives that are more technical and oth-

ers that are more process related. Examples:

•	 The more technical objective of the software unit 

design and implementation clause is to imple-

ment	software	units	as	specified.

•	 The more process-related objective of the 

software	unit	verification	clause	is	to	provide	

evidence that the software detailed design and 

the	implemented	software	units	fulfill	their	

requirements and do not contain undesired 

functionality.

Besides objectives ISO 26262 does contain require-

ments and work products. Work products are results 

of	fulfilling	requirements.	Fulfilled	requirements	are	

indicators for achievement of objectives. Require-

ments are useful especially as a basis for process 

steps and for checklists. Requirements may be pro-

cess-related and/or technical. Examples for how to 

fulfill	requirements:

•	 Technical example: Software safety mechanisms 

need to include mechanisms for error detection. 

An example of such a mechanism is a range 

check of input data.

•	 Process example: A suitable programming lan-

guage is required. A process-related practice is 

to	define	a	coding	guideline	and	to	use	a	MISRA	

checker	(automatically	at	check-in)	that	assures	

compliance with the guideline.

•	 Process example: Safety requirements shall be 

traceable. Using a suitable requirements man-

agement tool is a best practice.

An assessor needs to judge whether requirements 

are	fulfilled	and	whether	work	products	comply	with	

their	ISO	26262	requirements.	Fulfilled	ISO	26262	

requirements are an indication for achievement of 

objectives.

Upon an assessment the requirements correspond-

ing to the objectives, the state-of-the-art regarding 

technical solutions and the applicable engineering 

domain knowledge are considered. The assessor is 

supposed to recommend acceptance of a product 

development if the assessor is convinced that func-

tional safety is achieved. The assessor will only rec-

ommend acceptance if the assessor is convinced that 

all	objectives	of	ISO	26262	are	fulfilled.	Therefore,	

work on a clear, understandable and convincing 

chain of argumentation and document it in the 

safety case.



8

5 Software Safety Concepts and Architectures

5.1 Introduction
In this section different software safety concepts are 

depicted, and some hints are given to decide for the 

appropriate safety concept depending on the condi-

tions	in	a	specific	development	project.

Often many of the functionalities and properties of 

ECU software are not safety-related, but only a part 

of them. Only those software elements that contrib-

ute to the implementation of safety requirements are 

considered safety-related.

To implement a mix of safety-related and non-safe-

ty-related functionalities there are two fundamental 

design options mentioned in ISO 26262:

•	 Develop a design in which such a mix can coexist. 

This is often called “Mixed ASIL Design” and is 

a typical approach if the portion of safety-related 

functionalities is rather small or third-party or 

QM software needs to be integrated.

or

•	 Develop the complete ECU software in conform-

ance with the “Maximum ASIL” assigned to any of 

the safety-related functions within the ECU. This 

is often called “Maximum ASIL Design” and the 

typical approach if the portion of safety-related 

functionalities is rather large.

Figure 1 depicts different ECU types holding software 

elements with and without related safety require-

ments and illustrates these two design patterns.

Both design options must focus on the same goal: 

To achieve the necessary integrity of the safety func-

tions. The level of integrity expresses the degree of 

trust you can have that a software will provide the 

stated functions and properties as demanded under 

specified	conditions.

Figure 1: Mapping of software safety requirements to ECUs

SW Safety Requirements

Software Elements

ECU Software

Mixed ASIL
Design

Maximum ASIL
Design

QM QM QM

QM ASILASILASIL

QM

QM QM

ASILASIL ASIL

ECU 1 ECU 2 ECU 3 ECU 4



9

Necessary integrity can be achieved in two ways: 

One is to prevent that the software contains errors 

which lead to a malfunctioning behavior. Another is 

to include technical measures that are able to detect 

and control such a malfunctioning behavior.

In a “Mixed ASIL Design” the elements do not all 

have	 the	 same	 integrity	 based	 on	 their	 specific	

development goals. If they are integrated into one 

software without further measures, the integrity of 

the complete software cannot exceed that of the ele-

ment with the lowest integrity, like the weakest link 

of a chain.

To achieve a higher degree of overall integrity one 

must provide evidence that the elements with a lower 

integrity are not able to interfere with the elements 

of the target ASIL which is called “achieving Freedom 

from Interference”. There are two principles to argue 

“Freedom from Interference”:

•	 Detect that an interference has occurred and 

mitigate the effects

•	 Prevent that an interference occurs

Detection	and	mitigation	is	sufficient	if	the	resulting	

(degraded)	 functional	behavior	of	 the	software	can	

still	 ensure	 “Functional	 Safety”	 (e.	g.	 achieve	 and	

maintain	a	safe	state).

In a “Maximum ASIL Design” all elements have the 

same integrity. When integrating such elements, 

in principle the complete software has the same 

integrity and does not require an examination for 

Freedom from Interference. Nevertheless, the safety 

analysis at software architectural level may reveal 

weaknesses	 which	 have	 to	 be	 addressed	 (e.	g.	 by	

technical	measures)	 in	order	 to	achieve	 confidence	

in “Functional Safety”.

The following sections describe the two approaches 

in further detail. Since software architectures accord-

ing to AUTOSAR are more and more used it is men-

tioned which contribution AUTOSAR features could 

provide.

5.2 “Mixed ASIL Design”
A “Mixed ASIL Design” targets the development of 

software elements according to QM or a lower ASIL 

without jeopardizing the integrity of the entire soft-

ware system, which may have a higher ASIL. It may 

also enable the containment of errors in a partition.

This concept requires a suitable software design on 

application level, i. e. functional blocks must be 

coherent and unwanted interlinking between func-

tional	 blocks	 (e.	g.	 via	 global	 variables)	 should	 be	

avoided. It also requires a safety mechanism realiz-

ing the freedom from interference on hardware and 

software level which ensures that a software element 

with a lower ASIL cannot interfere with a software 

element with a higher ASIL. This mechanism must be 

able to either prevent that a malfunction of one ele-

ment leads to the malfunction of another element, 

or it must be able to detect such interference and to 

mitigate the effects in time. This safety mechanism 

has to be developed according to the “Maximum 

ASIL” of the software safety requirements realized on 

this ECU.

ISO 26262 mentions different aspects of possible 

interferences:

1. Memory, which includes the RAM as well as the 

CPU registers

2. Timing and executions, which refers to blocking 

of execution, deadlocks and livelocks or the 

incorrect allocation of execution time in general

3. Communication, summarizing all possible errors 

that could occur in the communication between 

software elements both within the ECU and across 

ECU boundaries.

The separation between “QM or lower ASIL” and 

“Maximum ASIL” elements provides the following 

benefits:

•	 Development methods for “Maximum ASIL” only 

have to be applied for safety-related software 

elements	(which	includes	the	elements	ensuring	

the	freedom	from	interference).	This	allows	the	

reuse	of	existing	QM	software	(e.	g.	third-party	

software),	as	long	as	it	is	not	safety-related.

•	 Propagation of failures between software 

elements of the same ASIL can be prevented 

or detected, although it is not mandated by 

Freedom from Interference. However, this also 

supports the separation of safety-related parts 

with high availability requirements from other 

parts in fail-operational architectures.

•	 Some failures caused by hardware defects can 

also	be	prevented	or	detected	(e.	g.	timing	super-

vision	will	detect	a	faulty	clock	source).



10

On the other hand, the following disadvantages have 

to be taken into account when applying the “Mixed 

ASIL Design”:

•	 The separation adds additional complexity to the 

software design. Especially in legacy software 

safety-related and non-safety-related functional 

blocks are often tightly coupled, which requires 

additional effort for a software architecture 

redesign.

•	 The safety mechanism to ensure “Freedom 

from interference” may result in a performance 

penalty	during	runtime	(e.	g.	for	reprogramming	

the	MPU	and	context	switching).	To	reduce	these	

penalties to a minimum, the interaction between 

the software elements that are separated by 

freedom from interference mechanisms needs to 

be as low as possible.

5.3 “Maximum ASIL Design”
The “Maximum ASIL Design” has its advantages in 

use cases where a high share of the software provides 

safety-related functionality. In this approach, both 

the safety-related and the non-safety-related func-

tions follow the development process of the high-

est ASIL in the system. For the non-safety-related 

software elements, the coexistence argumentation 

follows a process argumentation: if those software 

elements are developed in the same stringent way 

applying the same process methods as the safety- 

related software elements, the coexistence of the 

elements is possible without further technical sep-

aration measures. The only difference between the 

non-safety-related and the safety-related software 

elements is then the necessary safety analysis for the 

latter.

Compared to the “Mixed ASIL Design” this approach 

gives	the	following	benefits:

•	 No additional complexity for development of a 

partitioning concept.

•	 No performance penalty due to safety mecha-

nisms ensuring Freedom from Interference.

•	 Improved quality also for the non-safety-related 

software components which leads to a higher 

availability of the system.

On the other hand the following disadvantages have 

to be considered:

•	 The development effort increases since all soft-

ware elements have to be developed according to 

the highest ASIL. For the non-safety-related part 

an additional safety requirement is then applied, 

which	requires	the	non-interference	(“silence”)	

with the safety-related part.

•	 As ASIL development does not mean that the 

software is error free, errors in these parts are not 

prevented to propagate by design.

•	 Inclusion	of	third-party	software	(e.	g.	“black-

box”	software)	is	more	difficult,	as	the	develop-

ment process of these modules is often unknown 

or	cannot	be	influenced.

5.4 Mechanisms to realize freedom 
from interference
The following paragraphs contain suggested protec-

tion mechanisms for different kinds of fault classes 

in	the	data	and	control	flow	domain,	which	includes	

faults listed in Annex D of ISO 26262 part 6. Data 

faults are either related to global data, to data resid-

ing on the execution stack, or to data received by QM 

software	components	(SWCs).	Additionally,	hardware	

register faults constitute a special kind of data faults. 

Control	flow	faults	are	either	related	to	timing	faults	

or to interrupt faults. Faults due to illegal references 

can have an effect on either the data or the control 

flow	domain.

Please note: The following list includes mechanisms 

sufficient	 for	 typical	 ASIL	 A	 or	 B	 projects,	 but	 it	

also shows additional mechanisms that can also be 

used for higher ASILs. Especially those mechanisms 

required for higher ASILs are typically supported by 

AUTOSAR Basic Software features.

Fault class: “Global Data Faults”

There are several options to address this fault class:

1. By partitioning the available RAM memory space 

in QM and ASIL parts and cyclically verifying a 

memory	marker	in	between	(initialized	to	a	spe-

cific	pattern),	the	probability	to	detect	a	relevant	

buffer	overflow	originating	in	QM	software	is	

increased.

2. To protect safety-related data without using an 

MPU, double inverse storage concepts can be 

employed to detect accidental overwrites by QM 

software by comparing the original variables 

to bit-inverse shadow copies upon reading or 

cyclically	(as	long	as	the	fault	tolerance	time	is	

considered).	If	a	larger	set	of	data	is	not	written	

frequently,	memory-efficient	checksums	can	be	

used	to	detect	accidental	modifications	of	data	

parts. This protects against QM data pointer cor-

ruptions	and	QM	buffer	overflows,	both	resulting	

in writes to ASIL data.



11

3. To protect against accidental overwrites the 

CPU’s	memory	protection	unit	(MPU)	can	be	used	

together with an allocation of tasks to separate 

partitions. In AUTOSAR, it is the responsibility 

of the Operating System to handle the MPU and 

thereby to ensure a proper separation between 

the entities. This is typically required for ASIL C 

and D but can also be useful or even required for 

lower ASILs.

Fault class: “Stack Faults”

There are several options to address this fault class:

1. By using a stack range check that checks whether 

the current stack pointer is in range of the 

allocated stack memory, the probability to detect 

a	stack	overflow	or	underflow	by	QM	software	

modifying the stack pointer can be increased. 

Such a stack check can be implemented cyclically 

or – in most cases even better – in context of a 

task switch.

2. Additionally,	stack	overflows	and	underflows	can	

be	detected	by	checking	memory	markers	(ini-

tialized	to	a	specific	pattern)	placed	above	and	

below the allocated stack memory, which detects 

a subset of stack faults. This feature is also part 

of the AUTOSAR Operating System. Please be 

aware that this mechanism cannot detect stack 

overflows	that	do	not	overwrite	the	memory	

markers.

3. The stack can also be protected by a hardware 

MPU which actually prevents all stack faults. This 

is typically required for ASIL C and D but can also 

be useful or even required for lower ASILs.

Fault class: “Less Reliable QM Data Quality”

If data that is relevant to safety-related ASIL calcu-

lations	 is	 routed	 through	QM	software	parts	 (e.	g.,	

drivers or communication stacks that process hard-

ware	input)	that	could	corrupt	data,	there	are	several	

options to address this:

1. A single sporadic fault can be detected via a 

plausibility check. Such a plausibility check can 

use either values from other sources or previous 

values from the same source as an additional 

input. For instance, receiving a speed value of 

0 km/h after having received one of 100 km/h 

in the previous CAN message 20 ms before is 

not plausible. Please note that the detection 

probability depends strongly on the assumed 

fault model.

2. Alternatively, and with a higher detection 

probability, end to end protection checksums and 

signal alive checks can be used. The AUTOSAR 

end-to-end protection modules have been speci-

fied	for	this	purpose.

Fault class: “Hardware Register Faults”

To protect against QM software parts accidentally 

modifying hardware register state that is safety-re-

lated, there are several options:

1. Some microcontrollers offer locks for selected 

configuration	registers	or	configurable	write-once	

semantics, which should be used.

2. A cyclic check of the current hardware state 

against the expected state as held in software 

can be performed to detect faults as long as the 

fault tolerance time is considered.

3. Use a pro-active recovery mechanism that 

periodically rewrites the expected register states 

(assuming	single	bit	flips	as	fault	model).

4. The strongest mechanism is the protection of 

memory mapped registers via the MPU. Some 

CPUs also provide a Peripheral Protection Unit 

for this task. This is typically required for ASIL C 

and D but can also be useful or even required for 

lower ASILs.

Fault class: “Timing and Execution Faults”

To	protect	against	QM	software	significantly	delaying	

or even blocking ASIL software execution, there are 

several options:

1. Hardware or software watchdogs can be used. 

These	should	either	be	configured	in	a	window	

mode, or they should regularly be triggered at 

the end of its deadline to detect delays as early 

as possible.

2. Depending on the scheduling scheme employed 

in	the	basic	software	operating	system,	overflows	

of time slices or task overruns can be detected. 

This is also a feature of the AUTOSAR Operating 

System.

3. The strongest mechanism that also detects fault 

in the program logic is the supervision of the 

program	flow	in	combination	with	time	stamps.	

This is also a feature of the AUTOSAR Watchdog 

Stack and is typically needed only for ASIL C and 

D.

Fault Class: “Interrupt Faults”

To protect against the fault that global interrupts or 

ASIL interrupt sources are permanently disabled by 

QM software parts, both properties can be checked 

cyclically to be enabled in an assertion.



12

To protect against QM Interrupt Service Routines 

executing at higher rate than expected, which will 

delay or even block the execution of ASIL ISRs, two 

measures can be taken:

1. If possible, from the real-time scheduling point 

of view, ASIL ISRs should be given a higher prior-

ity compared to QM ISRs.

2. As a monitoring measure, the arrival rate of 

QM ISRs can be monitored to be in range of the 

expected rate. This is also a feature of the AUTO-

SAR Operating System.

Fault class: “Illegal References”

By referencing ASIL symbols, QM software could 

include code that writes to protected ASIL data or 

executes protected ASIL functions. This misbehavior 

can be protected against by partitioning the software 

in the design phase. By explicitly denoting ASIL data 

and function declarations that are legal to be ref-

erenced from within QM software parts in an ASIL/

QM interface header, this design by contract can be 

proven in an automated way. An example approach 

would be to implement the interface header in a 

dummy module and link it to the QM software parts. 

The	 linker	 will	 then	 report	 undefined	 references	

from QM to ASIL software parts, which states an 

illegal interference. This proof is especially impor-

tant when integrating QM third-party code, and the 

explicit interface can additionally be used to inte-

grate plausibility checks when transitioning from/to 

QM	software	 (see	also	 fault	class	“less	 reliable	QM	

data	quality”).



13

6 Safety Analyses on Software Architectural Level

6.1 Introduction
A safety analysis on software architectural level is 

required by ISO 26262-6:2018 Clause 7.4.10. There 

is only little information on how to perform such an 

analysis. There are only few requirements the anal-

ysis	needs	to	fulfill	that	are	specified	in	ISO	26262-

9:2018 Clause 8. Annex E of ISO 26262-6:2018 

explains the application of such an analysis. The 

following section intends to give guidance on how a 

safety analysis on software architectural level can be 

performed. Moreover, the suggested methodology is 

visualized in an example.

ISO	26262	defines	the	purpose	of	the	safety	analysis	

on software architectural level as to:

•	 Provide evidence for the suitability of the 

software	to	provide	the	specified	safety-related	

functions and properties with the integrity as 

required by the respective ASIL,

•	 identify	or	confirm	the	safety-related	parts	of	the	

software and

•	 support	the	specification	and	verify	the	effective-

ness of the safety measures.

A safety analysis on the software architectural level 

is intended to complement analyses on the hardware 

level and on the system level. 

The	 software	 architectural	 level	 is	 defined	 in	 ISO	

26262-6:2018 Clause 7.4.5. It comprises the static 

and dynamic aspects of the interaction of software 

components. The static aspects describe the hier-

archy of software components, and the interfaces 

and dependencies between them. Usually the static 

aspects are modelled using e. g. a UML Class Dia-

gram. The dynamic aspects should depict the data 

and	control	flow	between	software	components.	Usu-

ally, the assignment of functions of software com-

ponents	to	tasks	and	partitions	is	defined.	Dynamic	

aspects can be modelled using e. g. a UML Sequence 

Diagram.

The software architecture does not describe the 

inner processing of software units. This is part of 

the detailed design of a software unit. During the 

safety analysis on the software architectural level, 

only the externally visible failure modes of the inner 

workings of a software unit are considered. It is not 

the intention of the presented methodology to ana-

lyze the details of a single software unit. Code level 

safety analyses are not considered appropriate since 

the effect of faults on unit level can well be analyzed 

on architectural level.

The software architecture is a prerequisite for the 

safety analysis on software architectural level. It is 

typically performed in iterations: An initial software 

architecture is available, and the safety analysis is 

performed possibly leading to improvements of 

mechanisms and architecture. The safety analysis is 

then updated in turn with the software architecture. 

Care must be taken that assumptions and conclu-

sions in the safety analysis are not invalidated by 

changes in the software architecture.

6.2 Methodology
The proposed safety analysis on software architec-

tural level comprises the following steps:

1. Identify the software safety requirements for the 

elements of the software in scope.

2. Identify failure modes of the elements of the 

software.

3. Identify the impact on each allocated safety 

requirement.

4. Identify the potential causes for the failure 

modes.

5. Identify, analyze and improve safety measures

6.2.1 Software Safety Requirements and 

Elements in Scope

After	 all	 prerequisites	 are	 met,	 define	 the	 scope,	

i.e. the software safety requirements and the ele-

ments of the software architecture that are subject 

to analysis. Elements of the software architecture are 

typically software components and units, i.e. parts 

of software that are grouped together to achieve a 

defined	functionality.

6.2.2 Failure Modes

The failure modes of an element of the software 

architecture depend on the element itself. Failure 

modes	should	be	identified	using	guide	words	that	

have been adapted to the software elements. ISO 

26262-6:2018 Table E.1 already suggests a basis 

for	 such	guide	words	 (“too	 late”,	 “too	early”,	 “too	

often”, “too rare”, “not at all”, “out of sequence”, 

“unintended activation”, “stuck-at”, “too high”, 

“too	 low”).	These	kinds	of	guide	words	are	helpful	

for data driven control applications, like many auto-

motive applications are.

The failure modes should be described as precise as 

possible, e. g. instead of “Signal XYZ is too high” 

use “Signal XYZ is more than A”, where A is a value 

above which a different behavior of the software is 

expected.



14

Completeness of the failure modes of a software 

element must be judged by the experts performing 

the safety analysis. The set of guide words supports 

achieving completeness of failure modes.

6.2.3 Impact on Safety Requirements allo-

cated to the Software

Typically, safety analyses on system and hardware 

level use FMEA-like methods with a risk priority 

number	(RPN)	or	similar	mechanism.	However,	this	

assumes a stochastic model when things fail. This is 

valid for hardware, because it wears out over time. 

Software does not fail with a certain probability. A 

fault in a software element either leads to the vio-

lation of a safety requirement or it does not. As a 

first	rule,	if	the	failure	of	a	software	element	violates	

a safety requirement, a measure must be imple-

mented.

6.2.4 Potential Failure Causes

For each failure mode the causes that could lead to 

this failure mode must be documented. Knowing the 

potential cause of a failure mode helps to identify 

appropriate mitigations, e. g. a software implemen-

tation fault may be mitigated via a special code 

review	(see	ISO	26262-9:2018	Clause	8.4.9).

6.2.5 Safety Measures

There are typically different kinds of safety measures 

that aim to mitigate the failure of a software ele-

ment:

•	 Additional safety mechanism

Adding a safety mechanism is the technical solu-

tion to an issue detected during the safety anal-

ysis.

This might comprise the creation of a new soft-

ware safety requirement.

Example: Add check in component XYZ to limit 

value DEF.

•	 Requirements on the size, complexity and 

development process of a software element

Sometimes there is no adequate mechanism pos-

sible and the software element must work as spec-

ified.

This is considered arguable if the element is lim-

ited in its size and complexity. No exact limits of 

size and complexity are provided here, since this 

is a decision that must be made based on cor-

porate standards, customer collaboration and/or 

external assessment within a project.

See also the SteeringColumnLockSwitch compo-

nent in the example below.

•	 Requirements on the user of the software

Some issues that are detected during the safety 

analysis on software architectural level, cannot be 

resolved on this level. They need to be addressed 

to the user of the software. The user might e. g. 

be the user of a software safety element out of 

context or the system incorporating an ECU run-

ning software.

6.2.6 Common Pitfalls

When performing a safety analysis on software 

architectural level there are some common pitfalls 

that should be avoided:

•	 Safety mechanism for safety mechanism when 

iteratively performed

If the safety analysis is performed in iterations 

and additional safety mechanisms have been 

introduced	 in	 the	 first	 iterations,	 care	 must	 be	

taken:

•	 Not to introduce additional safety mechanisms 

when analyzing existing safety mechanisms, 

and

•	 to show what is added in the analysis for an 

increment.

•	 Too detailed analysis

The safety analysis on software architectural level 

does	 not	 replace	 a	 detailed	 verification	 of	 the	

detailed design and code of a software compo-

nent. It focuses on the interfaces between soft-

ware components and units.

•	 Inconsistent software architecture

The safety analysis on software architectural level 

is usually performed on a model, e. g. a UML 

model. It must be ensured that this model is con-

sistent with the implemented software architec-

ture. This consistency check is out of scope of the 

safety analysis.

6.2.7 Example

Figure 2 exemplarily shows a safety requirement and 

derived software safety requirements for a steering 

column lock. For this example, it is assumed that 

random	 hardware	 faults	 (incl.	 transient	 faults)	 are	

covered by adequate hardware mechanisms like 

lock-step CPU and memory with ECC protection.

At	first	the	static	part	of	the	software	architecture	is	

described together with the allocated requirements 

(see	Figure	3).



15

Figure 2: Safety Requirements

Figure	3:	Logical	View	(Before	SW	Safety	Analysis)



16

Vehicle speed is received via the in-vehicle network 

from a different ECU. Direct I/O by software is not 

depicted for simplicity reasons. However, if software 

has interfaces to the hardware, the Hardware-Soft-

ware	 Interface	 (HSI)	provides	valuable	 input	 to	 the	

software safety analysis. In this case, random hard-

ware	faults	must	be	considered	in	detail,	e.	g.	bit	flip	

of a digital I/O register value

In	a	second	step	the	dynamic	parts	(see	Figure	4)	of	

the software are described. For simplicity reasons the 

complete software is executed on a single, periodic 

task without any interrupts. Real systems are usually 

way more complex in their dynamic behavior.

As the software architecture is now complete, the 

safety analysis on software architecture can be 

started. For each element of the software architec-

ture the failure modes are evaluated. Each failure 

mode is then evaluated in the context of each safety 

requirement. If a negative impact is detected, a 

safety	measure	 is	 defined.	 It	 is	 suggested	 to	 track	

defined	 measures	 in	 the	 planning	 tool	 used,	 and	

only reference the item from the safety analysis. If 

a safety measure is a development-time measure, it 

should	be	 specific	 for	 the	 respective	 failure	mode,	

e.	g.	name	a	concrete	 test	case	 that	verifies	 that	a	

certain failure mode does not exist.

A table-based form of documentation was chosen for 

this example. However, other forms may be applica-

ble as well.

Figure 4: Dynamic View



17

Safety 
Require-
ment

Software 
Architectural 
Element

Failure Mode Effect & 
Rationale

Impact With-
out Safety 
Measure

Potential 
Cause of 
Failure Mode

Safety Meas-
ure

SR1 RequestLockPre-
processing

RequestLock is 
unintendedly true

SteeringColumn-
Locker engages 
steering column 
lock only if vehicle 
is not moving and 
thus in a safe state

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 RequestLockPre-
processing

RequestLock is 
unintendedly false

Steering col-
umn lock is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 VehicleSpeedPro-
cessing

VehicleSpeed is 
zero even though 
real vehicle speed 
is not zero

The steering 
wheel lock switch 
is engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM1

SR1 VehicleSpeedPro-
cessing

VehicleSpeed is 
not zero even 
though real vehicle 
speed is zero

Steering column 
lock switch is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 SteeringColumn-
Locker

LockSteeringCol-
umn is unintend-
edly locked

Steering column 
lock switch is 
engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM2

SR1 SteeringColumn-
Locker

LockSteeringCol-
umn is not locked 
even though 
intended

Steering col-
umn lock is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

SR1 SteeringColumn-
LockSwitch

SteeringColumn-
LockSwitch is unin-
tendedly locked

Steering column 
lock switch is 
engaged even 
though Vehicle-
Speed is not zero

Unsafe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

SM3

SR1 SteeringColumn-
LockSwitch

SteeringColumn-
LockSwitch is 
not locked even 
though intended

Steering column 
lock switch is not 
engaged

Safe •	 Systematic fault 
in the element 
itself

•	 Invalid input 
provided to 
element

-

Table 2: Example Software Safety Analysis



18

ID Safety Measure

SM1 Add new SW Safety Requirement to VehicleSpeeedProcessing: VehicleSpeedProcessing 
must	only	pass	VehicleSpeed	zero	if	end-to-end	protection	(incl.	sequence	counter	and	
CRC)	check	passed.
This safety mechanism must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.
Signal must be provided with ASIL D at input interface => feedback to system level.
(This	mechanism	also	covers	random	hardware	faults	that	are	not	in	scope	of	this	analy-
sis.)

SM2 SteeringColumnLocker must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.

SM3 SteeringColumnLockSwitch must be low complex and developed and tested according ISO 
26262 ASIL D requirements for this failure mode.

Table 3: Example Safety Measures

Figure	5:	Logical	View	(After	SW	Safety	Analysis)

The safety analysis leads to a new software archi-

tecture	(see	changes	in	red)	implementing	an	addi-

tional software safety requirement “Set VehicleSpeed 

only to zero if validity of received value is ensured.”. 

Assurance here could e. g. be achieved using end-

to-end protection of the vehicle speed signal. The 

safety	analysis	has	also	confirmed	the	sensible	allo-

cation of the other software safety requirements.

The methodology presented above is considered to 

be compliant to ISO 26262-6:2018 Annex E.



19

In software development, a safety element out of 

context	(SEooC)	is	a	generic	software	component	that	

fulfills	safety	requirements	of	a	system,	although	it	

has	been	developed	without	knowledge	of	the	final	

system. Its development is based on assumptions on 

the	use-cases	it	can	fulfill	and	on	the	context	it	will	

be integrated into. Consequently, the incorporation 

of a SEooC into system development is a non-trivial 

task. This chapter outlines:

•	 What a SEooC is,

•	 what the properties of a SEooC are, and

•	 how a SEooC can be incorporated into a project.

Although hardware SEooCs are also in scope of the 

ISO 26262, this guideline focuses on software as 

SEooC. This section only discusses the usage of a 

SEooC, the development of a SEooC is out of scope. 

The SEooC is described in ISO 26262, Part 10, 

Clause 9.

7.1 Definition of a SEooC
A SEooC is a stand-alone element that implements 

assumed safety-related functionality and that is 

intended to be used in different safety-related sys-

tems. It can thereby be a system, a sub-system, an 

array of systems or a hardware or software compo-

nent. As it is developed out of context, i.e. not in the 

scope of the target system, it is not an item accord-

ing to ISO 26262. Examples for typical SEooCs are 

microcontrollers or generic software components 

like AUTOSAR components or protocol stacks, which 

can provide safety-related functionality that can be 

reused	without	modification	in	different	projects	and	

systems.

As the developers of the SEooC do not know the 

precise context of the target system, they employ 

assumptions on the SEooC’s usage and the environ-

ment in which it is going to be integrated. Therefore, 

safety requirements need to be assumed as input 

for the SEooC development. These requirements 

are documented and provided to the SEooC user as 

“assumed safety requirements”.

In addition, during development, the SEooC pro-

vider	may	assume	conditions	 to	be	 fulfilled	by	 the	

SEooC user. All such assumptions must be commu-

nicated to the SEooC user as well, e. g. as so called 

“assumptions	of	use”.	The	fulfillment	of	the	assumed	

safety requirements of the SEooC is only given if all 

the	applicable	assumptions	of	use	are	satisfied.	The	

SEooC provider lists the “assumed safety require-

ments” and the “assumptions of use” in the safety 

manual of the SEooC.

The safety case for the SEooC, i.e. the argumenta-

tion	and	evidences	for	the	fulfillment	of	the	assumed	

safety requirements, are created by the SEooC pro-

vider.

7.2 SEooC properties
The assumed safety requirements that a SEooC pro-

vides and implements have an ASIL allocation desig-

nated from the SEooC provider. This means that the 

SEooC	 user	 can	 rely	 on	 the	 specified	 functionality	

up	to	the	defined	ASIL	and	that	the	SEooC	provider	

performed	 the	 necessary	 verification	 and	 analysis	

activities with the required rigor. However, this is 

only	valid	if	the	SEooC’s	definition	of	the	“assumed	

environment” matches the target system where the 

SEooC is going to be integrated.

The safety manual is an important collateral to 

the SEooC and must be carefully considered by 

the SEooC user. It documents the assumed safety 

requirements and the assumed target environment. 

The	safety	manual	defines	how	the	SEooC	must	be	

integrated into the target system and the necessary 

duty of care so that the assumed safety requirements 

are ensured.

From the target system’s perspective, a SEooC may 

bring non-required functionality, which the SEooC 

provider	developed	according	to	the	specified	ASIL,	

although it is not used in the user‘s project. This can 

be	seen	like	configurable	software.

The appropriate usage of the SEooC usually 

requires effort on user side during integration, 

e. g. execution of verification measures defined 

in the safety manual. This might be easily missed 

when considering the use of a SEooC.

7.3 How to use a SEooC in a pro-
ject
How can a SEooC then be integrated into the target 

system? The following steps are mandatory for a suc-

cessful and safe integration:

•	 The SEooC user must verify that the SEooC’s 

assumed	safety	requirements	match	the	specific	

safety requirements that have been derived from 

the system context.

•	 The SEooC user also must ensure that the SEooC’s 

assumptions of use are met.

7 Usage of Safety Elements out of Context (SEooC)



20

•	 If both requirements cannot be achieved, the 

SEooC is either unsuitable for the target system 

or additional safety measures must be imple-

mented.

•	 Further safety requirements that cannot be 

fulfilled	by	the	SEooC	must	be	addressed	within	

the project scope.

•	 To ensure safe operation of the SEooC, the SEooC 

user must adhere to the instructions of the safety 

manual. Violations of these instructions must be 

justified	within	the	project	scope.

The	 flow	 of	 these	 steps	 is	 illustrated	 in	 Figure	 6. 

From the system’s safety goals, functional and tech-

nical safety requirements are derived. Typically, this 

happens	in	various	steps,	Figure	6	shows	a	simplified	

view of this process. There are usually also require-

ments which are not safety-related. In the end, there 

is a set of software safety requirements and non-

safety related software requirements. In Figure 6, 

the safety-related requirements are represented 

by the green circles and the non-safety related 

requirements by the blue circles. The SEooC user 

must match the software safety requirements to the 

SEooC’s assumed requirements. It can happen that 

the SEooC provides functionality which is not needed 

by the system. Typically, additional safety functional-

ity must be implemented in the software application 

as it is not provided by the SEooC. It is the SEooC 

user’s responsibility to ensure that the combination 

of the software SEooC and the remaining application 

do not violate the system’s safety goals.

7.4 SEooCs and deactivated code
As a SEooC is developed without any knowledge 

about the target systems and builds on a set of 

assumed requirements, it is common that a SEooC 

contains	code	and	functionality	that	is	qualified	for	

usage in safety-related systems, but not necessarily 

needed by the SEooC user’s requirements. There are 

now two contradicting viewpoints:

•	 From a user’s perspective, this may be undesired 

functionality.

•	 From the SEooC provider’s perspective, this is 

desired	and	qualified	functionality.

Yet, ISO 26262 requires that this situation is dealt 

with: it states if during integration “[…] deactiva-

tion	of	these	unspecified	functions	can	be	assured,	

this is an acceptable means of compliance with 

requirements.”	(ISO	26262	-6	Clause	10.4.6).

How can the deactivation be ensured? Removal of 

the deactivated code, as for example necessary for 

aviation projects:

•	 Leads	to	a	specific	version	for	the	SEooC	user’s	

project, where certain functions are removed

•	 Loses	the	qualification	aspect	of	the	SEooC’s	

usage in various projects with different use cases

If code removal is not an option, the SEooC user 

can apply the following methods, which to a large 

extent are in the standard repertoire of safety devel-

opment methods, to ensure that deactivated code is 

not called:

•	 Control	flow	monitoring,

•	 ensure on application level that only necessary 

interface functions are called and that parame-

ters passed to used functions are correct,

•	 use dead code elimination by the compiler e. g. 

to ensure that unneeded library functions are not 

included into the binary,

•	 employ coverage analysis to verify that only 

intended interface functions of the SEooC are 

used.

In general, the SEooC user must argue that the situ-

ation	is	known	and	that	the	benefit	of	using	a	SEooC	

is higher than an individualized version. It must be 

ensured, for example by above listed methods, that 

the unneeded functionality is not used by the appli-

cation.



21

Figure	6:	This	figure	illustrates	schematically	the	mapping	of	system	safety	requirements	to	the	assumed	safety	

requirements of a software SEooC.

Safety Goals

Func�onal and Technical
Safety Requirements

Func�onal and Technical
Requirements

So�ware
Safety Requirements

So�ware
Requirements

SW Applica�onSW SEooC



22

8 Confidence in the Use of Software Tools

8.1 Motivation
Software tools play a major role in the implemen-

tation of processes and methods used during the 

development of safety-related systems, software and 

hardware.

Using	 tools	can	be	beneficial	because	 they	enable,	

support or automate safety-related development 

activities	 (e.	g.	 development	 and	 management	 of	

requirements or architectural designs, code gener-

ation,	 analyses,	 testing	 or	 configuration	 manage-

ment).

However, in case of a malfunctioning behavior such 

tools may also have adverse effects on the results 

of tool-supported development activities and thus on 

the	“Functional	Safety”	achieved	in	the	final	product	

or its elements including software.

ISO	26262	 provides	 an	 approach	 to	 achieve	 confi-

dence that using software tools does not jeopardize 

“Functional Safety”. This approach contains:

•	 Determination of single tools or tool chains which 

are relevant for safety-related activities and 

identification	of	the	used	functionalities	and	their	

purpose during development.

•	 An	analysis	to	determine	the	required	confidence	

for each relevant software tool, based on the risks 

related to the used functionalities and its role in 

the	development	process	(“classification“).

•	 Measures	to	qualify	a	software	tool,	if	the	classifi-

cation indicates that this additional risk reduction 

is needed.

8.2 Analysis and classification of 
software tools
This approach can be supported by the tool ven-

dor, e. g. by providing information such as generic 

analyses based on intended application use cases or 

test	cases	and	test	suites	 for	 tool	qualification.	The	

responsibility for using the tool in a suitable way 

remains with the user.

The following sections describe this approach in fur-

ther detail.

The risk related to the tool functionalities used for a 

specific	purpose	during	development	is	determined	

by the tool´s impact and the possibility to detect mal-

functions	 yielding	 the	 aggregated	 tool	 confidence	

level	(TCL):

1. The	tool	impact	(TI)	expresses	the	possibility	that	

a malfunction of a particular software tool can 

introduce or fail to detect errors in a safety-re-

lated item or element being developed.

•	 TI1: Shall be selected when there is an argu-

ment that there is no such possibility

•	 TI2: Shall be selected in all other cases

2. The	tool	error	detection	(TD)	expresses	the	con-

fidence	that	due	to	tool-internal	or	tool-external	

measures	(e.	g.	subsequent	process	activities)	

relevant tool malfunctions producing erroneous 

output can be prevented or detected.

•	 TD1:	High	degree	of	confidence	(that	a	

malfunction and its corresponding erroneous 

output	will	be	prevented	or	detected)

•	 TD2,	TD3:	Medium	or	low	degree	of	confidence

The	classification	depends	on	the	usage	of	the	tool	

(e.	g.	 used	 functionalities)	 as	 part	 of	 the	 complete	

development process.

Figure 7 shows the approach and table gives some 

examples.	 Please	 note	 that	 the	 specific	 workflow	

embedding the tool usage has to be considered.



23

Figure	7:	Classification	and	qualification	of	software	tools	acc.	ISO	26262

Used tool
functionalities
and their
purpose

TI2

TI1

TD3

TD2

TD1

TCL2

TCL1

TCL3

Tool
impact

Tool error
detection

Tool
confidence

level

Tool classification Tool qualification

ASIL

Qualification
methods for
TCL3

Qualification
methods for
TCL2

No qualification
required



24

Tool Use case Failure 
mode

TI Measures to detect 
or prevent mal-
functioning of tool

TD Rationale TCL Qualifi-
cation
needed

C-Code generator Generate C-Code 
from model

Incorrect transla-
tion from model 
to code

TI2 None TD3 Errors are not 
detected if no 
systematic tests are 
performed.

TCL3 Yes	(TCL3)

Full	verification	of	code	
with required coverage by 
tests, reviews and static 
code analysis

TD1 Errors are detected 
by	verification.

TCL1 No

Full	verification	of	code	
with code generator spe-
cific	checker	tool

TD1 Errors are detected 
by checker tool.

TCL1 No

Use redundant code gener-
ator and compare results

TD1 Failure of one tools 
will be detected by 
the other tool. Equal 
failure of both tools 
is unlikely

TCL1 No

Static code analy-
sis tool

Static code 
analysis

False negatives 
with respect to 
specified	error	
class	(e.	g.	array	
out of bounds for 
a bounds check-
ing	tool)

TI2 None TD3 Other tests do not 
focus on this error 
class

TCL3 Yes	(TCL3)

Configuration	
management tool

Checkout	specific	
artifact version

Checkout of 
wrong artifact 
version

TI2 Artifact	checksum	verified	
against external database

TD1 Corrupted data and 
wrong artifact ver-
sion will be detected 
externally

TCL1 No

Artifact was 
corrupted

TI2 Artifact	checksum	verified	
against tool internal 
database

TD1 Corrupted data 
will be detected 
internally

TCL1 No

Table	4:	Examples	for	tool	classification



25

8.3 Qualification of software tools
The resulting TCL may be reduced by improving the 

detection	or	avoidance	measures	(iterative	tool	anal-

ysis).	As	 a	 consequence,	 alterations	 in	 the	 process	

(e.	g.	removal	of	a	redundant	tool	in	the	tool	chain)	

may invalidate the TCL argumentation.

Example: If an analysis shows that for the tool and its 

intended usage a TCL1 cannot be argued, there are 

at least two options:

•	 Lowering the TCL by improving the TD introduc-

ing additional detection or prevention measures 

into	the	development	process	(e.	g.	checking	tool	

outputs)	or	into	the	tool	itself.

•	 Performing	a	qualification	of	the	tool	according	

to the TCL for the target ASIL if lowering the TCL 

is	not	feasible	or	not	efficient.

The quality of the documentation and the granular-

ity of the tool analysis require an adequate level of 

detail so that the resulting TCL is comprehensible, 

and	the	resulting	TCL	can	be	justified	(Neither	a	very	

detailed investigation nor a rough general view is 

helpful).

For	 TCL1	 classified	 software	 tools	 no	 qualification	

measures are required at all.

For	TCL2	and	TCL3,	tool	qualification	measures	pro-

vide	evidence	that	justifies	confidence	in	a	software	

tool for its intended use cases in the development 

environment. The following measures are applicable 

depending on the TCL and target ASIL:

•	 Increased	confidence	from	use.

•	 Evidence for a structured tool development 

process.

•	 Tool development in compliance with a safety 

standard.

•	 Validation of the software tool.



26

Participating companies in the 
“UG Software ISO 26262” working 
group:
Analog Devices GmbH

Bertrandt Ingenieurbüro GmbH

Brose Fahrzeugteile SE & Co.

Elektrobit Automotive GmbH

Elmos Semiconductor SE

Infineon	Technologies	AG

innoventis GmbH

Kugler Maag CIE GmbH

Mahle International GmbH

Marelli Automotive Lighting Reutlingen GmbH

Marquardt Service GmbH

Melecs EWS GmbH

Preh GmbH

OptE GP Consulting Optimize E Global Performance

STMicroelectronics Application GmbH

TDK Electronics AG

TE Connectivity Germany GmbH

vancom GmbH & Co. KG

Vector Informatik GmbH

Webasto SE

9 Participating Companies



27



ZVEI - German Electrical and Electronic 
Manufacturers’ Association 
Lyoner Strasse 9 
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-0 
Fax: +49 69 6302-317 
E-mail: zvei@zvei.org 
www.zvei.org

So
ur

ce
: Z

VE
I


