m PLATTTFORMMB ZV€I.
INDUSTRIEA.0 :
1] . in cooperation with Die Elektroindustrie

SPECIFICATION
Detalls of the Asset

Administration Shell

Part 1 - The exchange of information
between partners in the value chain of
Industrie 4.0 (Version 2.0)

Imprint

Publisher

Federal Ministry for Economic Affairs
and Energy (BMWi)

Public Relations

10119 Berlin

www.bmwi.de

Text and editing
Plattform Industrie 4.0
Bertolt-Brecht-Platz 3
10117 Berlin

Design and production

The Plattform Industrie 4.0 secretariat, Berlin

Status
November 2019

llustrations

Plattform Industrie 4.0; Anna Salari, designed by freepik (Title)

Preamble | 3

Contents
L PFBAMDIE ettt 15
11 EAITONIAI NOTESoveireeeee ettt 16
1.2 SCOPE OF thiS DOCUMENLc.viiiieciictieiee ettt et et st et e s teereeneeneeseeseesresneareeneens 16
13 Structure Of the DOCUMENTc.oiviiiiieiiee et 16
1.4 PriNCIPIES OF the WOTK.......ecuveieice et sttt st re e e e b reneenre e 17
2 Terms, Definitions and ADDIEVIBLIONScccoiiiiiiiei i 18
2.1 TErmMS & DEFINITIONS.c.eiiiitiiiiit bbbttt bbbttt 19
2.2 ADDIEVIALIONS ... 23
3 Basic Concepts and LEAdiNG PICIUIEciiiiiiiiiieiie sttt e sb s 24
3.1 BaSIC CONMCEPLS ...ttt ettt ettt bbb bbbt bbbtk b et b ettt b et 25
3.2 LT Vo [T T T (0] SRS 25
4 The Metamodel of the Administration Shell ... 27
4.1 INEFOTUCTION ... r et nr et r et nr et nn s 28
4.2 TYPES AN INSTANCESvveieeiieeite ettt e et e e st e et e e e e e aeeas e e ste e te e be e teeseesseesreesreesreeneas 28
421 Life Cycle with Asset Types and INStANCEScvccvveveriieiie e esie e 28
4272 EXAMPIE ...t bbbt 29
423 Asset Administration Shell Types and INStANCES..........ooeiiriiiineeee e 30
4.3 CompOSite 14.0 COMPONENEScuvitiieiiiterieieate sttt sttt eb et b e ettt sr et nr et sr e bt sbe e ene e 31
4.4 1dentification OF EIEMENTScoviiiiiiiicc bbb 32
441 OVEIVIBW ...ttt ettt b et b bbb st b e b st e bt s b bt eb e e b e e e bt s b e e eb e st st ebenr et ebennes 32
442 What 1deNntifIErS EXIST?coviiiiiiiieiiicnt e 33
443 Identifiers for Assets and AdmInNIStration SHellS ..o 33
444 Which Identifiers to use for which EIEMENTS...........ccoiiiiiinii e 34
445 How are New 1dentifiers Createa?coociviereiieneiseneese e 36
4.4.6 Best Practice for Creating URI Identifiers.........ccovveii i 36
447 Creating a Submodel Instance based on an Existing Submodel Templateccoceoveiriinene. 38
448 Can New or Proprietary SUbmodels be FOrMEd?ccooeiiiiiiiiiiieee e 38
449 Usage of Short ID for Identifiable EIEMENScooeiiiiiiiieeeeee e, 38
4.5 BV BINIES .. r e nne s 39
451 OVEIVIBW ...ttt ettt ettt b e bbbt b st e bt b e st eb e b e bt ekt st e st e bt et e st ebe s e e st ebeneeseebennes 39
452 Brief Use Cases for Events Used in Asset Administration Shells ..o, 39
453 Input and Output DireCtions OF EVENEScooiiiiiiiieee e e 41
45.4 TYPES OF EVENLS ...ttt bttt bbbttt et e b e b sb e bt b e e bt e e e b et sbeebesre e 41
455 Possible Future Attributes Of an EVENT ... 42
4.6 Overview Metamodel of the Administration Shell.............ccocoiiiii e 45

4.7 Metamodel Specification Details: DESIGNALOISccciirieirierieirerese e 48

4 | Preamble

4.7.1 INEFOTUCTION ...t bbbttt b 48
4.7.2 COMMON ATFIDULES ... bbb 48
473 Asset Administration Shell AtFDULES ..o 56
474 ASSEE ATIFIDULES ..ot 57
475 Submodel and Submodel Element AUFDULES ..o 59
4.7.6 Overview of Submodel EIEMENT TYPES ...cvviviieiieieiere e 62
4.7.7 Data EIement ALIIDULESoviviiiieceeee e 62
4.7.8 PrOPErty ALIIDULES ..o ettt et e s 63
4.7.9 Multi Language Property AFDULES ... 63
4.7.10 Reference EIement ALLDULES ..o 64
4.7.11 RANGE ATIITDULES ...t bbbttt bbb e 65
4.7.12 BI0OD and File AFDULESooeiiiieee e 66
4.7.13 Submodel Element Collection AIDULES ..o 67
4.7.14 Relationship and Annotated Relationship Attributes. ... 68
4.7.15 OPEration ALLIDULEScviiiece ettt e e esrt e s teesraesreesreenneas 69
4.7.16 Capability ALTTDULEScvveieie e e e ste e ste e ae s e sreesteesraesreenreeneens 70
4.7.17 L LY N L] U TSP 71
4.7.18 EVENT ATITTDULES ...t b e bbbt nn e 72
4.7.19 VIBW ALITIULES ..ottt 73
4.7.20 Concept Dictionary and Concept Description AttribDULESccceveiiiiriiiiinece e 73
4.7.21 Referencing in Asset Administration ShellS...........cooiiiiiiii e, 75
4.7.22 DALA TYPES ...t e 78
4.7.23 Templates, Inheritance, Qualifiers and CategorieS........cccvvvevieieeiieiiecee e 80
4.8 Predefined Data Specification TEMPIALESc.coveiiiiieiiiee e 81
48.1 Concept of Data Specification TEMPIALESc.ccvveiieiieeiiie e 81
4.8.2 Predefined Templates for Property and Value DeSCriptions...........ccccveveiieiiieiieeie e 81
483 Predefined Templates for Unit Concept DeSCrPtioNSc.cccveiieiieiieie e 89
484 Embedded Data SPeCIfiCAtIONSciiiiiiie e 91

5 Mappings to Data Formats to Share 14.0-Compliant Informationcccceevereniniiiinninie e 93
51 LC1=T 0T | OSSOSO UR PRSPPI 94
5.2 GENETAL RUIES ...ttt ettt e ettt nb et eb e b st ne e ebeneeneebe e 94
521 Serialization of Values of Type “Reference” ..o 95
5.2.2 Semantic Identifiers for Metamodel and Data Specificationscccccovvveiiiiniiie s 95
5.3 UNIFIEA EXAMPIE ... bbbt bt e e e bbbt b e bt e b e et e e sb et st ebeanes 97
54 D QY | OO TP PP PP PP PSPPI 99
5.4.1 GENEIAL ...ttt bbb bR bbb 99
5.4.2 INEFOTUCTION ...ttt bbbttt 99

5.4.3 RUIBS ..ottt et ettt ettt e e et e e e ettt e s eteeeesesaeeesatseeeeasateesaateeeeaataeeeaareteesaraeeesarreeas 99

Preamble | 5

544 Example for TOP-LeVEl SITUCLUIESccoiiiiiiiieiee e 100
545 D ST D Y (oo L] T (10 LSOO U TP 101
5.4.6 KEYS AN RETEIENCES .. viviiviiiieieiese sttt sttt re et s e e e s aesbenneereens 102
5.4.7 Asset Administration Shell Mapping........ccccovivieeieieisi e e 103
5.4.8 ConceptDescriptions and EmbeddedDataSpecifications Mapping........ccccvevevereereieresiesinannns 103
5.4.9 Attribute Based Access Control Mappingccvcveveieriniese e 104
55 B ST PP TPR PRSPPI 105
551 GBNBIAL ...ttt bbb bbb bbbt b nr s 105
552 RUIES ..t b b bbb bbbttt e 105
553 Example for TOP-LeVel STIUCTUIEScuiiiiiiieireese e 106
554 Examples for References to 1dentifiables ..., 106
555 Examples for RefereNCEEIEMENTccooiiiiiiiiee e 108
5.5.6 Examples for GIODaIRETErENCE...........oci e 109
55.7 Example for a kind = "Template™ ReferenCe.........ccocevveivece e 109
5.6 I O PRSP PP PP PR PRPROT 111
5.6.1 GBNEIAL ...t 111
5.6.2 RUIES ... ettt bbb bbb bt bt e bt bt bt nt e bt et nee e e s 111
5.6.3 EXAMPIE OVEIVIEW ..ottt bbb bbbttt 112
5.6.4 EXample SChema SRAPE. ..o 113
5.6.5 IRT IMBPPING ..ttt ettt bbbt b e bbbt eb e bt et nb e ebenr e ebe e 113
5.6.6 EXAMPIE IMAPPING .ottt bbbt bbb 113
5.6.7 Example Asset Administration Shell with References ..., 114
5.6.8 EXAMPIE ASSEL ...ttt r et et e e be e te e e raenreenreeeas 115
5.6.9 Example SUbmModel With PrOPEITYcvciiiiiie et 116
5.6.10 Example MultiLanguage StriNG.......cueoveiieiiie sttt ae e e st sre s 118
5.6.11 Example Concept DESCIIPLIONccvviiieiee ettt sre s 118
5.7 OP C U A et bbbt h e b E e R e Rt b E Rt h bt bt b e e nneens 120
571 GBNBIAL ...ttt bbb bbb e bbb bbb e 120
5.7.2 RUIES ..ttt et bbb bbbt bbbt 122
5.7.3 EXAMPIE OVEIVIBW ..ottt bbbt bttt ea s 124
5.7.4 Identifiables and REfErabIesov i 126
5.75 Example Submodel With Property tC.cocooiviriirineiieneesese e 126
5.7.6 Example Property of a Submodel with Semanticld...........coovviiiiiiniii e 128
5.7.7 Examples Submodel Element CollECtIONS..........cooueiiiiiiiiiieiee e 128
5.7.8 EXAIMPIE ASSEE ...ttt bbbttt bbb bttt e et bbb e 129
5.7.9 EXAMPIE FIB.....oeiieee e et b e bbbt e e bt bbb 131
5.7.10 Example Operation and Capabilitiescooiiiiiiiiiee e 133
5.7.11 EXAMPIE RETEIEINCESvvieeetstee bbbt e s 134

6 | Preamble

5.7.12 EXample QUATITIEEoii it e e bbb 135
5.7.13 Example ConCept DESCIIPLIONcviiuiiiitiiiesieeiiee ettt bttt s see e 137
5.7.14 Example Data SPeCITICAtIONc.cveviiii i 139
5.7.15 e 1001 0] [T YT | S 139
5.7.16 Example HasDictionaryEntry for Model...........ccooeviiiiiie i 140
5.8 AULOMEALIONML ... bt r et e r et n e n e 140
5.8.1 GNETAL ... 140
5.8.2 RUIES ..ttt bbb bbbt bbbt nr 141
5.8.3 EXAMPIE OVEIVIEW ..ottt bbbttt 143
5.8.4 Example Property and Concept DESCHIPLION.c..ccuvirieiieieiseniee e 145
585 Example Attributes of AIDULES ..o 146
5.8.6 Example Language Tagged SIFNGScureiiiririiirieieisiesieese st 146
5.8.7 eV 1] O L=) SR 146
5.8.8 EXample REFSEMANTICcvociiiiiciece e e nne e 146
5.8.9 EXAMPIE RETEIEINCESvveiee et e e e e sreenreees 147
5.8.10 Example ReferenNCEEIEMENTccooiiiiieiee e 148
5.8.11 eV 1] o L= OSSR 148
5.8.12 EXAMPIE OPEIALION ..ottt bbbt bbb e 148
5.8.13 EXamPle QUANITIET ..o bbb 149
5.8.14 Example Concept DESCIIPLIONS.cuiiiiiriiiiirieieiisie et 149
5.8.15 EXAMPIE VIBW ... bbbttt bbbt b et na 150
5.8.16 Example Submodels of KiNd=TemPIate..........cccoriiriiiiiie e 151

6 Attribute Based & ROIE BASEU ACCESS........eviiriiieiriiieisierees ettt ar e 152
6.1 Passing PermisSions fOr ACCESSiiiiiieiieiieii ettt te e ste e sae et et a e beeteesae s e e sraesreesreenas 153
6.2 Effective Access Permissions based on Access Permission RUIES ..o 153
6.3 Filtering of Information in EXport and IMPOrtcceiiiiieiiiie e 153
6.4 Overview Metamodel Asset Administration Shell for SECUrityccovviiiiieici e, 155
6.5 Metamodel Specification Details: DESIGNALOISccoeriiiriiiiirieieseee e 158
6.5.1 INEFOTUCTION ...ttt b e et sb e et sb e eb e e e et e 158
6.5.2 SECUNEY ATFIDULES ...ttt sttt se s 159
6.5.3 Certificate ALTTOULES ..ottt e 159
6.5.4 Access Control Policy POINt ALIOULEScviiiiiiiieinee e 160
6.5.5 Local Access CONtrol AMDULES...........coviiriiiiicc s 162
6.5.6 Attributes for Access Permission RUIE ..ot 164

7 Package File Format for the Asset Administration Shell (AASX)......coiiiiiiiee e 167
7.1 GBINETAL ...ttt bbb E Rt r et r et n s 168
7.2 Selection of the Reference Format for the Asset Administration Shell Package Format 168
7.3 Basic Concepts of the Open Packaging ConVENtIONS............cooiiiiiiriieineneesieeeese e 169

Preamble | 7

7.4 Conventions for the Asset Administration Shell package file format (AASX) ..o 170
7.5 LOGICAI IMOTEL ... e b et e bbb be bt e b e et e b sbesbesbeeneas 170
7.6 e Y 1o L 1Y o [172
7.7 DIgItAl SIGNATUIESe.viieiteetieteie et e ettt e e et e be s te st e s teese e s e e e e teseestesteaseeseenseseeseenrenrearens 174
7.8 g To] Y 0] (o] o PSSR 177
8 Tools for the Asset ADMINISLration SNEll ..o s 179
8.1 (@] o1 IS To U] (r= T o T S 180
9 SUMMANY AN OULTOOK ...ttt bbb bbbt b et n s 181
Annex A. Concepts of the AdmINiStration SHell ... 184
i. GBINETAL ...ttt bbb bbb b e bR e R R e bR bbbt b bt nn s 184
i, Relevant SOUrces and DOCUMENTScuiuiriiiiiirieieiint ettt bt 184
iii. Basic concepts fOr INAUSLIIE 4.0coiiiiiiiieiiee bbb e 184
iv. The CONCEPL OF PrOPEITIES......ciuiitiiieeiieie ettt b et nb bbb 185
v. The Concept Of SUDMOEISocuoiiiieiie e 186
vi. Basic Structure of the Asset Administration Shell ... 187
vii. REGUITEIMEINTS. ...ttt bbbt bt e et sb e e bttt e bt e b e et et sbesbenbeabeas 189
Annex B. Templates for UML TabIeS.......ccvoiiiiicice st 197
Annex C. Legend for UML MOGeINGcviiiiiiiiieiiie ettt 198
Annex D. Metamodel UML with inherited AtrDULEScoooiiiiiiiiiiiee e 200
Annex E. XML schemas and complete eXample ..o 204
i. XML Schemas for AdmInistration SNell ... 204
i, Schema for overall AdmMINIStration Shell ... 204
iil. AAS [ECBL300 DALALYPE ..ottt sttt sb et bbb et e sre e st e e nbeenneenrenne e 216
iv. AAS Attribute Based Access CONrol MOGEL ..o 219
v. HXIMIL EXBMPIE ..ttt bbbttt b e bbbt bt b et e b bbb bt 222
Annex F. JSON schema and complete eXamMPIEooviiiiiie e 231
i. JSON Schema for the Asset Administration Shell Environment ... 231
i, JSON EXBMPIE ..ottt b bbb bt bbbttt sb et ebenr e b e 249
Annex G. RDF schema and complete eXamplecooiiiiiiiiiii e 259
i. RDF Data Model for the Administration Shell ... 259
i, RDF Schema for the AdmInistration Shell............cocooviiiiii s 315
iii. RDF EXAMPIE ...ttt ettt bbbt b ettt n ettt nr e 353
Annex H. AutomationML and complete eXampPIe..........coeiiriiiiieiiiere e e 384
i. INETOTUCTION ...t b e bt e bbbt et b bbbt b e n e enenn e ebennes 384
ii. AutomationML Libraries for Asset Administration Shell ..o, 384
iii. RefSemantic Values and ROIES TOr AASco i 412
iv. AUtOMAtIONIML EXAMPIE. ...t et bbb bbb 416
Annex . OPC UA Companion SPECITICAtIONcooviiiiiiiriiicirieere e 463

8 | Preamble

Annex J. MEtAMOAE] CRANGES. ... ettt et sttt e e e bt bbb e e e e b e e et sbeebeens 464
i. Metamodel Changes W/0 SECUFILY ParT ..ot 464
ii. Metamodel Changes — SECUFILY PAITccooiiiiiiiiieicisee e 466

YA g 1cY e S = 1] [oo i To] VSR 468

Preamble | 9

Table of Tables

Table 1 Life cycle phases and roles of type and INSTANCEcceieiiiiiieciec e eneas 28
Table 2 Identifiables, attributes and allowed IdENTITIErScviiiiiiie s 34
Table 3 Proposed StTUCLUIE TOI URISiiiiiiicie ettt sttt st te e e e et e e s aesbesneenee e et e stesaentenneeneas 36
Table 4 Example URN and URL-based Identifiers of the Administration Shell ..., 37
Table 5 Basic Types uUsed in IMEtAMOUENcuo i ettt sttt sae st neeneas 80
Table 6 Concept Description with IEC612360 Data Specification Template for Properties and Ranges............cc.cc.c..... 86

Table 7 Concept Description with IEC612360 Data Specification Template for other Data Elements and Capabilities . 88

Table 8 Concept Description with IEC612360 Data Specification Template for other Submodel Elements Data........... 88
Table 9 Other Elements With SEMANTICIU...........ooviiiiiiice e 89
Table 10 Distinction of different data format for the AAS ... 94
Table 11 Minimal XIML fOr tOp I8VE] SLTUCLUIEeeveeie ettt sneenreenas 100
Table 12 USING XSD MOUEI GrOUDS......ecvieieiieieeiee st e sie et e st e st e e ete et e st e s e e steesteesteesseasseassesseessaesteeteaneesneesneeaneenses 101
Table 13 Minimal JSON fOr tOp 1€Vl SLIUCLUIE........cccveeie et e e e sreenas 106
Table 14 Exemplary minimal JSON fOr RETEIENCESc.cvuiiiiiiicirie e 107
Table 15 Exemplary ReferenceElement iN JSON ..ot 108
Table 16 Exemplary GlobalReferenCe iN JSONc.oiiiiiiiiiieeer bbb 109
Table 17 Exemplary type REfErence iN JSON ..ottt 110
Table 18 Turtle excerpt of an AssetAdMINIStratioNSNENl ClASSooviiiiiiiiii e 112
Table 19: A SHACL Shape for the AssetAdministrationShell and its asset attribute.............ccccoevveveeiiiiie s, 113
Table 20 RML TriplesMap snippet for parsing XML 10 RDF..........ccovoiiiiiie et 114
Table 21 Exemplary AssetAdministrationShell stating its identification and containing one ASSetcccocevvevienne. 115
Table 22 RDF ASSEE N TUILIE ..ottt bbbttt nn e 116
Table 23 Exemplary Submodel stating its semantic ID and containing one SubmodelElementccccooevevievenne. 117
Table 24 Exemplary MultiLanguage description of & SUBMOELccooiiiiiiiiiii e 118
Table 25 RDF serialization of attribute values in different languages.cccoeriiriniiinc s 118
Table 26 ConceptDescription EXampPle iN RDF ..ottt 118
Table 27 Example Filtering of Information in XIMILoouiiiiiiiiiiere e 155
Table 28 Set of possible policies based on how package files are signed, how to enable a given policy and the
CONSEQUENCES OF 8 POICY ..ttt ettt e bbbt bt bt e bt et et sb e e b e s bt e b e e b e entebesbesbesbeebeenes 176
TADIE 29 JSON SCNBIMIA. ...ttt ettt bttt b e bbbt e h e s b e e e b e bt eb £ e be e R e e s b e b e besbeebeebeemeeneenbenbesbeebeene e 231
TabIE 30 JSON EXAMPIE ...ttt b bttt a e b e e et bt bt eb e e b e e Rt e s e e b e beebeebeebeemeeseebesbesbeebeene e 249
Table 31 Changes W.r.t. V1.0 W/O SECUIILYouiiiiiiiieitieieeieee sttt sttt ettt sttt e e bbb bt eese e e e nbesbesbesbeene e 464
Table 32 New Elements in Metamodel V1.0 W/O SECUILYc..oiviiiiiiiiieieie ettt st 465

Table 33 Changes Metamodel W.r.t. V1.0 SECUFILYciiiiiiiiiieirieeeri ettt 466

10 | Preamble

Table 34 New Elements in Metamodel W.r.t. SECUFILYooeeiiiiii ittt e 467

Table of Figures

Figure 1 Use Case File Exchange between Value Chain PartnNerS.........cccceieiiieiecisieeieesesese e se e s eneens 25
Figure 2 File Exchange between two value Chain Partners...........ccoviiiieiieie i 26
Figure 3 Exemplary types and instances of assets represented by multiple AAS ... 29
Figure 4 Exemplary relations between metamodel of AAS, AAS types and AAS INSTANCEScccvevvriiivereienencreeenes 31
Figure 5 Extract from Metamodel for Composite 14.0 COMPONENEScoiriiiiirieiiirieisie et 32
Figure 6 The Administration Shell needs a unique Identifier, as well as the asset being described (Modified figure from
.) TP 34
Figure 7 Motivation of exemplary identifiers and IdShOrt.............cooiiiiiiiiii e 39
Figure 8 FOrward and REVEIS EVENTS...........uiiiiie ettt te e te e e e e st e saeenba e ta e teebeasaesneesneesneennis 40
Figure 9 Tracking Of Changes Via EVENTS.........cooiiiiiie ettt et et et e te e tesaesneesneenaeenas 40
Figure 10 Value PUush EVENLS aCT0SS CIOUMS........c.cueiieieiie ettt sttt e st e ba et e et essaesnaesneenneennas 41
Figure 11 Overview Metamodel of the Asset Administration Shell ..o 45
Figure 12 Metamodel PACKAGE OVEIVIEWciuiiiie ettt te e te e te et e e st e s aeesta e be e teeteasaesnaesneenneennas 46
Figure 13 Metamodel for Identifiables and RefErabIes.coviiiiiiiiiii e 48
Figure 14 Metamodel FOr TABNTIFIETcoiiiiiiii et ettt er e 50
Figure 15 Metamodel FOr HASKINGcoiiiiiiiiic bbbt b e sr e eb e ebe s 51
Figure 16 Metamodel for Administrative INFOrMAtioNcooiiiiiiiiii e 52
Figure 17 Metamodel for Semantic References (HasSEMANTICS).......cviiiiiriiiiiiiie e 53
Figure 18 Metamodel Qualifiables, Formulas and CONSIIAINTS...........cccveiiiiiiiieiiee e 54
Figure 19 Example Formula “Machine Status not RUNNING”cooiiiiiiiiiniiiiiceieseeee e 54
Figure 20 Metamodel HasDataSPeCifiCatiONc.cciiiiiii ittt reesaeenas 56
Figure 21 Metamodel for HasDataSPeCIifiCAtIONccccuviiiiiiii e e e sae s 56
Figure 22 Metamodel AssetAdMINIStratiONSNElL............covi i 56
FIQUre 23 MetamOOe] OF ASSEL...... .ottt b bbb bbbt s bt eb e bbb e s e ebenb st et e ne et ebe e 57
Figure 24 Metamodel fOr SUBMOTEL ..ottt ebe s 59
Figure 25 Metamodel Overview for Submodel Element SUDLYPES.........oviiiiiiireiie e 61
Figure 26 Metamodel fOr Data EIEIMENTS........cviiiiiii ittt ettt sb et sbe e b e 62
Figure 27 Metamodel FOr PrOPEILYco.ciiiieiie ettt sttt bbbttt s e et e sbeseebeneeneebe e 63
Figure 28 Metamodel for MultiLangUAgEPTOPEITYc.cciiiiie ettt ettt bbb 63
Figure 29 Metamodel for Refer@NCEEIEMENT ..ot et be bbb 64
Figure 30 MetamOael FOr RANQEooiiiiiiee ettt ettt st b e e bt e b et s e e bt bt e bt e b e e e e besbesbenbeeneenes 65
Figure 31 Metamodel for BIOD @nd Filec.o oo bbb bbb 66
Figure 32 Metamodel for Submodel Element COIIECLIONS..........ccoiiiiiiiieie e 67

Figure 33 Metamodel for Relationship and Annotated Relationhip EIEMENTSccooiiiiiiiiiieicneee e 68

Preamble | 11

Figure 34 MetamOdel OF OPEIALIONSciiiiiie ettt ettt b et e et e e b e b s ae et e be e b e e e et e b sbesbesbeeteanes 69
Figure 35 Metamodel fOr Capabilitiescoooi i ettt b b bbb 70
Figure 36 MetamOael OF ENITIESviviiciicse sttt sttt e e e e et e te s eesbesbeeneene e e e seeseeseenreeneanes 71
Figure 37 Metamodel for Event and MELAEVENL...........c.civiiiiiiiii et sr e e aneeneens 72
Figure 38 MetamOUEI OF VIBWSccuiiiiiciiiie sttt sttt st et et e e ne e s e e e e be s tesbesbeeseene et e seeseeseenneeneenes 73
Figure 39 Metamodel of Concept Dictionary and Concept DeSCIIPLIONScceveieiieerierieieie e se e s sreereens 73
Figure 40 Metamodel for REfErENCES ANT KBYS.......uiiiieiiieie ettt sttt st be e raese et e e sresreaneeneenes 75
Figure 41 Built-In Types of XML Schema Definition 1.1 (XSD)coieiiiiriiiiiinieiierieiete et 79
Figure 42 Data TYPE LANGSIIINGSELveiiririeiiiteiteiet ettt sttt bbb bbbtttk bttt ab e et e sn e b e 80
Figure 43 Concept of Data Specification TEMPIALEScoiiiiiiiii bbb 81
Figure 44 Data Specification Template for defining Property Descriptions conformant to IEC 61360cc.ccoveuenee. 82
Figure 45 Example Property from @CI@SScuieiiirieiiieieiete ettt sttt b et sttt sr ettt sr et b e bbb et b et e 82
Figure 46 Example Property Description with Value List from @CI@SScccveieriieieeie e 83
Figure 47 Example Value DescCription from @CI@SS.......ccuviviiiiiie ettt e et te e te e sreesreenas 83
Figure 48 Example Value Desription from eCI@sS AUVANCEUccveiiiieiieiiee et e e se e 83
FIigure 49 TyPe “ValUCLISEueiiiiiiieiieie ettt ettt s b e bt e et ae e e he e s bt e b e e bt e s b e e s e e s be e nbeenbeeneenreenrennee e 84
Figure 50 Concept Descriptions for Properties conformant t0 IEC61360cccccveveeiiiiiiiiie e 85
Figure 51 Data Specification Tempate for Physical Units (DataSpecificationPhysicalUnit) and its Usage.............c....... 90
Figure 52 Example of a concept description for a unit: 1/min (from eCI@SS)ccecereriiireiiiiieieeieee e 91
Figure 53 Realization of Embedded Data SPECITICALIONScoriiiiiiiiiiic e 92
Figure 54 Graphic View on Exchange Data Formats for the Asset Administration Shell ..., 94
Figure 55 Unified Example for EXamMPIEIMOTON ..ottt 98
Figure 56 Top level structure of an AssetAdministration Shell environment mapped to XML Schema........................ 100
T TRy A ST 1Y ToTo [=] I €] o U] oL ST 101
Figure 58 KEYS ant RETEIENCESiciiiieiie ettt st et et eea e s bt e te e be e beesaesreesteesteeaeanseansennee e 102
Figure 59 Overview on mapping and MELA-0aLa...........c.cccveiieiieie et e e e sre e sreesaeenbeeneeesee e 103
Figure 60 Concept description in XIML iN QENEIALc.ccveiieiieii ettt re e sae e enbennee e 104
Figure 61 Data specification via IEC 61360 property attribULES..........ccociiiiriiiiiieie e 104
Figure 62 Attribute Based Access Control Model Mapping — Security MOl ..o, 104
Figure 63 Attribute Based Access Control Model Mapping — Policy Points Model ..., 105
Figure 64 Attribute Based Access Control Model Mapping — Policy Information POINtS..........coceoreniinenncienecnen, 105
Figure 65 Top level structure of an AssetAdministration Shell environment mapped t0 JSON.........ccccevrerviiiennennen. 106
Figure 66 Submodel reference in AssetAdministrationShell fOr JISONcocoiiiiiiiiiiie s 107
Figure 67 Usage of ReferenCeEIEmMENt iN JSONc.oiiiiiiie ittt bbb eneas 108
Figure 68 Usage of GIODaIRETErENCE IN JSONc.iiiiiiiiiie bbbttt b bbb eneas 109
Figure 69 Exemplary type ReferenCe iN JSON ..ottt be bbb eneas 110
Figure 70 Simplified graph of the core classes in the eXamPIe. ... 112

Figure 71 Graph snippet of an AssetAdministrationShell, linked to an Asset through a Reference and Key 115

12 | Preamble

Figure 72 Asset and its identifying SUDMOUENooiiiiii e e 116
Figure 73 Graph of the relations between a Submodel (F13E8576F6488342) and a Property (Manufacturer) 117
Figure 74 Overview OPC UA Information Model fOr AAS ..ot s 120
Figure 75 Submodel Element SUBtYPeS iN OPC UA ...t ettt sresresreeneas 121
Figure 76 Overview OPC UA Server with Max ROtation SPEEU.........c.ccuvveieiiiiiiieiisieeie et 125
Figure 77 Identifiables and Referables in OPC UAottt sttt e sresneeneas 126
Figure 78 Example Submodel TechnicalData (EXIFACL)c.cceieiiieiieieeieie st s eneas 127
Figure 79 OPC UA StruCtUIe SUDMOEL.........ciiiiieiiiiietse ettt bbbt 127
Figure 80 Example UAEXxpert Max. Rotatation SPeed PrOPEITYcccciiiirieirenieiene ettt 128
Figure 81 Example MaxRotationSpeed Property as part of Submodel TechnicalDatacc.ccoeevreneinicnciienee, 128
Figure 82 Structure CollectionType and OrderedColleCtIONTYPEc.coveiiirciiiieere e 129
Figure 83 Example Submodel Documentation with Collection for OperatingManualc.ccocevneniinneiienece, 129
Figure 84 EXample SErVODCIMOLON S ASSEL......vcuiiiieiieiieiteesteesie e iesee s e s e steeste et e sstestseste e teesbeasaesseesreesteesseenseensenneeses 130
Figure 85 Example UAEXPErt ASSEt SEFVOIMIOTONcveiuiiiiieiieeieeiesteseeseesteeste e e st e te e e e tessaesseesreesreeseanseaneennee e 130
Figure 86 Structure Asset Administration Shell with Asset and Submodels..........cccoviveieiiii 131
Figure 87 OPC UA Types for Submodel Elements File and BIOD...........cccooiiiiii i 131
Figure 88 Example OperationManual @S AASFIIETYPEocveiieice ettt re e sae e e e e nnee e 132
Figure 89 Example OperatingManual File in UAEXDPEITcciiiiiiiiieiie et 133
Figure 90 EXampPle OPErAtiON SCAMNccuiirieiiterieeite ettt sttt sttt sttt bbb et b e bbbttt sb e sttt e st st b e st b 134
Figure 91 Example Operation SCan iN UAEXPEIT........cociiiiiiie ittt bbb n s 134
Figure 92 Example References shown for the reference to a submodel ... 135
Figure 93 QUAlITIEr TYPE IN OPC UAottt bbb ettt b bbbttt b et st e et 136
Figure 94 Example Qualifiers for SUDMOUELcc.o oo s e ena e 136
Figure 95 Example Lifecycle Qualifier for Submodel Techncial Data...........ccccovevviiiiiiiiiccececc e 136
Figure 96 Example ConceptDescription Max. Rotation Speed (EXIFaCt)ccovvevviiiiieiie e 137
Figure 97 ConceptDescription MaxRoationSpeed in OPC UA SEIVENccciiiiiiiieiieiie e ste e see e e sae e enve e 138
Figure 98 Example Data Specification Template IECE1360cccciueiieeiieieeiicie et e e sre e re e s 139
Figure 99 EVENE TYPE INOPC UA ...ttt ettt bbb bbb bbb bbbttt b e e et bbb 140
Figure 100 HasDictionaryEntry for SUDMOTEL ..o 140
Figure 101 Example in AUtOMAtion IML EQITOTcccoiiiiiiieiie et 144
Figure 102 Example Property MaxXROTAtIONSPEEAoviirieiiiieiieiie ettt 145
Figure 103 Example DataSpecificationContent of Concept Description MaxRotationSpeed conformant to template
DataSpecification]ECBL360TEMPIALEoouiiieieiitieieiieieee ettt bttt e e et beeb e b e e s e se e b et sbesbesreeneas 145
Figure 104 Example Identification with two SUDAIFDULESccoiiiiiie e 146
Figure 105 Example for attribute value in multiple langUAgESccuriiiiiiiiii e 146
Figure 106 Example Asset in INStANCE HIBIAICNYc.oiiiiiie it 146
Figure 107 Example for RefSemantic and semanticld of the Property “MaxRotationSpeed”c.ccocevvreriiireninnnnen, 147

Figure 108 Example for serialized reference as value for attribute sSemanticldccococviieiineiicie s 148

Preamble | 13

Figure 109 Example for ReferenceElement wWith INterface...........cooeiiiiiiiii i 148
FIGUIE 110 EXAMPIE FIIE ..ottt b e bbbt bt e bt e st et e b e ke s bt eb e s beebe e s e e e e besbeebesbeaneas 148
Figure 111 Example Operation "SelectProgram™ with input Variables.............cccciviiviieiiiiesc s 149
Figure 112 Example Qualifier “PredicateRelation” with qualifier value “GREATER THAN 0 for a Property......... 149
Figure 113 Example Concept Description using predefined data specification template IEC61360..............ccccvvvrunnnen. 150
Figure 114 Example Embedded Data Specification IEC61360 of Concept Description for Property “MaxRotationSpeed”
.. 150
Figure 115 EXaMPIE SAFELYVIBW ..ottt bbbt bbb bbbt nn s 150
Figure 116 Example for System Unit Class with a Submodel template for Technical Datac.ccoceoreiiiiienennnen. 151
Figure 117 Example Filtering for EXport and IMPOIT.........ccooiiiiiiieee e 154
Figure 118 Attribute Based ACCESS CONLIOI [22]......ciui ittt ettt sb e e 155
Figure 119 Metamodel Overview AcCess CONIIOL OF AAS ..o e 157
Figure 120 SecUrity OVEIVIEW PaCKAGESuciveiieiieiieitesteeste et e st e e e e ste e saesse e s e st e te e teesbessaessaesreesaeenneenseeneenneeses 158
Figure 121 Metamodel for Security AttriDULES OF AASo e sne e 159
Figure 122 Metamodel fOr CertifiCALES........ciiueiieii ittt e e e e s e e s e e saeesreenbeeneennee e 159
Figure 123 Metamodel for Access Control POLICY POINTS........cucciiiiiiiiie e 160
Figure 124 Metamodel fOr ACCESS CONIOL......cuviiiiie ettt e et ebe e s e e s reesreesaeenteeneennee e 162
Figure 125 Metamodel for Access PermisSion RUIE...........ccociiiiiiiiee e 164
Figure 126 Process for generating and consuming AASX PACKAJESccereirerieiirenieisie ettt 168
Figure 127 Logical model for the AASX FOIMAL.........cceiiiiiiiie e 171
Figure 128 Physical model for an AASX based on a sample product (left) and an example of mapping to the logical model
(101 OO OO SO OO OO P TSR U PR SOPRPTSOPR 173
Figure 129 Important concepts of Industrie 4.0 attached to the asset [2] [23]. 14.0 Component to be formed by
AdMINISTration SNl AN BSSEL.cviiieiiii bbbt n s 185
Figure 130 Exemplary definition of a property in the IEC CDDccoiiiiiiie et 186
Figure 131 Examples of different domains providing properties for submodels of the Administration Shell................ 187
Figure 132 Basic structure of the AssetAdmMINIStration Shell............cooe i 188
Figure 133 Aggregation in Metamodel in UML — LEGENGccooiiiiiiiiiiiiceeee e 198
Figure 134 Association in Metamodel in UML = LEGENG.......ciiiiiiiiieiie ettt 198
Figure 135 Composition in Metamodel in UML - LEgENGooiiiiiiiiieeee e 198
Figure 136 Identification in Metamodel in UML = LEJEN ..o 198
Figure 137 Inheritance Classes in Metamodel in UML - LEGENG........coeiiiirieiiiiiieienenese e 199
Figure 138 Inheritance Enumerations in Metamodel in UML - LEGENG........cccooiiiiiiiiieierese e 199
Figure 139 Core Model With INNerited ALIIDULES..........oiiiiee bbb e eneas 200
Figure 140 Operation With iNNerited AFDULES ..ot e 201
Figure 141 Access Control with inherited attriDULEScoo it e 202
Figure 142 Submodel Element Collection With INNEFITANCEccoiiiiiiiii e 203

Figure 143 Example Servo Motor in OPC UA (EXIFACE)coveiiirieiiieiieise ettt 463

14 | Preamble

1 Preamble

16 | Preamble
1.1 Editorial Notes

This document was produced August 2018 to November 2019 by the sub working group “Asset Administration Shell” of
the Platform Industrie 4.0 Working Group “Reference Architectures, Standards and Norms .

The first version of this document was produced Sep 2017 to July 2018 by a joint working group with members from
ZVEI SG “Models and Standards” and Platform Industrie 4.0 Working Group “Reference Architectures, Standards and
Norms “. The document was subsequently validated by the platform’s Working Group ‘““Reference Architectures,
Standards and Norms .

For better readability, in compound terms the abbreviation "14.0" is consistently used for "Industrie 4.0". Used on its own
"Industrie 4.0" continues to be used.

1.2 Scope of this Document

The aim of this document is to make selected specifications of the structure of the Administration Shell in such a way that
information about assets and 14.0 Components can be exchanged in a meaningful way between partners in a value creation
network.

This part of this document therefore focuses on the question of how such information needs to be processed and structured.
In order to make these specifications, the document formally stipulates a few structural principles of the Administration
Shell. This part does not describe technical interfaces of the Administration Shell or other systems to exchange
information, protocols or interaction patterns.

This document focuses on:

e Exchange format for the transport of information from one partner in the value chain to the next
o Metamodel for specifying information of an Asset Administration Shell and its submodels

e ldentifiers

e Access Control

e Mappings to suitable technologies to be used in different life cycle phases of a product

This document currently features the second version V2.0. It targets to be adequately complete and coherent to be used
as basis for developments and as input for discussion with international standardization organisations and further
cooperations.

The definitions in and the form of the document should be such that development departments in the value creation
networks have enough detailed information to start work on internal systems for exchanging information and on
corresponding databases.

1.3 Structure of the Document

Clause 3 summarises relevant, existing content from the standardization of Industrie 4.0. In other words, this clause
provides an overview and explains the motives, and is not absolutely necessary for an understanding of the subsequent
definitions.

Clause 4 stipulates sufficient structural principles of the Administration Shell in a formal manner in order to ensure an
exchange of information between the Administration Shells. An excerpt of a UML diagram is drafted for this purpose. A
more comprehensive UML discussion which does not set standards can be found in the annex.

Clause 5 provides detailed definitions for the exchange of information compliant to this specification in existing data
formats like XML, AutomationML, OPC UA information models, JSON or RDF. An explanation is provided for each of
these data formats stating how information is to be represented (metamodel), and an example of a representation is
provided.

Clause 6 describes the promotion of attribute based access models for information security.

Clause 7 describes, how the information of one or more Administration Shell could be packed into a compound file
format.

Preamble | 17

The Annex contains details w.r.t. the mappings done in Clause 5 plus additional background information on asset
administration shell.

1.4 Principles of the Work

The work is based on the following principle: keep it simple but do not simplify if it affects interoperability.

For creating a detailed specification of the Administration Shell according to the scope of part 1 (— 1.2), result papers
published by Plattform Industrie 4.0, the Trilateral cooperation with France and Italy and international standardization
results were analysed and takes as source of requirements for the specification process. As many ideas as possible from
the discussion papers were considered.

The partners represented in the Plattform Industrie 4.0 and associations such as the ZVEI, the VDMA, VDI/ VDE and
Bitkom, ensure that there is broad sectoral coverage, both in process, hybrid and factory automation and in terms of
integrating information technology (IT) and operational technology (OT).

Design alternatives were intensively discussed within the working group. An extensive feedback process with the so
called "sounding board" of this document series, with the Plattform's working groups and with associated partners were
engaged about the design alternatives and the final content of the specification.

Guiding principle for the specification was to provide detailed information, which can be easily implemented also by
small and medium-sized enterprises.

2 Terms, Definitions and Abbreviations

Terms, Definitions and Abbreviations | 19

2.1 Terms & Definitions

Forward notice:

Definition of terms are only valid in a certain context. The current glossary applies to the context of this document.

access control

protection of system resources against unauthorized access; a process by which use of system resources is regulated
according to a security policy and is permitted by only authorized entities (users, programs, processes, or other systems)
according to that policy

- [SOURCE: IEC TS 62443-1-1]

application

software functional element specific to the solution of a problem in industrial-process measurement and control

Note: An application can be distributed among resources and may communicate with other applications.

- [SOURCE: IEC TR 62390:2005-01, 3.1.2]

asset

physical or logical object owned by or under the custodial duties of an organization, having either a perceived or actual
value to the organization

Note: In the case of industrial automation and control systems, the physical assets that have the largest directly
measurable value can be the equipment under control.

> [SOURCE: IEC TS 62443-1-1:2009, 3.2.6]

asset administration shell (AAS)

standardized digital representation of the asset, corner stone of the interoperability between the applications managing
the manufacturing systems. It identifies the Administration Shell and the assets represented by it, holds digital models of
various aspects (submodels) and describes technical functionality exposed by the Administration Shell or respective
assets.

Note: Asset Administration Shell and Administration Shell are used synonymously.

- [SOURCE: Glossary Industrie 4.0]

attribute

- data element of a property, a relation, or a class in information technology
- [SOURCE: ISO/IEC Guide 77-2, SO/IEC 27460, IEC 61360]

class

description of a set of objects that share the same attributes, operations, methods, relationships, and semantics

- [SOURCE: IEC TR 62390:2005-01, 3.1.4]

capability
implementation-independent potential of an Industrie 4.0 component to achieve an effect within a domain

Note 1: Capabilities can be orchestrated and hierarchically structured.
Note 2: Capabilities can be made executable via services.
Note 3: The impact manifests in a measurable effect within the physical world

20 | Terms, Definitions and Abbreviations
- [SOURCE: Glossary Industrie 4.0]
component

product used as a constituent in an assembled product, system or plant

- [SOURCE: IEC 61666:2010, 3.6]

concept
unit of knowledge created by a unique combination of characteristics

- [SOURCE: IEC 61360-1, ISO 22274:2013, 3.7]

digital representation

information that represents characteristics and behaviors of an entity

Note 1: Information is data that within a certain context has a particular meaning. Data is content represented in a
digital and formalized manner suitable for communication, storage, interpretation or processing
Note 2: Behavior includes functionality (description and execution)

- SOURCE: [IIC Vocabulary 1IC:1IVOC:V2.2:20190903, notes added]
digital twin

digital representation, sufficient to meet the requirements of a set of use cases

Note: in this context, the entity in the definition of digital representation is typically an asset

- [SOURCE: IIC Vocabulary 1IC:IIVOC:V2.2:20190903, adapted]
identifier (ID)
identity information that unambiguously distinguishes one entity from another one in a given domain

Note: There are specific identifiers, e.g. UUID Universal unique identifier, IEC 15418 (GS1).

- [SOURCE: Glossary Industrie 4.0]
instance
concrete, clearly identifiable component of a certain type

Note 1: It becomes an individual entity of a type, for example a device, by defining specific property values.
Note 2: In an object-oriented view, an instance denotes an object of a class (of a type).

-> [SOURCE: IEC 62890:2016, 3.1.16 65/617/CDV]

operation

executable realization of a function
Note 1: The term method is synonym to operation

Note 2: an operation has a name and a list of parameters [ISO 19119:2005, 4.1.3]

- [SOURCE: Glossary Industrie 4.0]

ontology
an explicit specification of a (shared) conceptualization

- [SOURCE: Gruber “A Translation Approach to portable ontology specifications”, Knowledge acquisition 5.2 (1993): 199-220]

Terms, Definitions and Abbreviations | 21

property
defined characteristic suitable for the description and differentiation of products or components

Note 1: The concept of type and instance applies to properties.

Note 2: This definition applies to properties such as described in IEC 61360/ ISO 13584-42

Note 3: The property types are defined in dictionaries (like IEC component Data dictionary or e CI@ss), they do
not have a value. The property type is also called data element type in some standards.

Note 4: The property instances have a value and they provided by the manufacturers. A property instance is
also called property-value pair in certain standards.

Note 5: Properties include nominal value, actual value, runtime variables, measurement values, etc.

Note 6: A property describes one characteristic of a given object.

Note 7: A property can have attributes such as code, version, and revision.

Note 8: The specification of a property can include predefined choices of values.

- [SOURCE:according ISO/IEC Guide 77-2] as well as [SOURCE:according Glossary Industrie 4.0]

qualifier

well-defined element associated with a property instance or submodel element, restricting the value statement to a certain
period of time or use case

Note: qualifier can have value associated

- [SOURCE: according to IEC 62569-1]

variable
software entity that may take different values, one at a time

- [SOURCE: IEC 61499-1]

smart manufacturing

manufacturing approach, that improves its performance aspects with integrated and intelligent use of processes and
resources in cyber, physical and human spheres to create and deliver products and services, which also collaborates with
other domains within an enterprise's' value chains.

Note 1: Performance aspects include agility, efficiency, safety, security, sustainability or any other performance
indicators identified by the enterprise.

Note 2: In addition to manufacturing, other enterprise domains can include engineering, logistics, marketing,
procurement, sales or any other domains identified by the enterprise.

Note 3: this definition is, as of November 2019, under discussion within the ISO/ IEC joint working group (JWG)
21. However, it gives a good indication and a citable source.

- [SOURCE: ISO/TMB/SMCC]

submodel

models which are technically separated from each other and which are included in the asset administration shell

Note 1: Each submodel refers to a well-defined domain or subject matter. Submodels can become standardized
and thus become submodels templates.

Note 2: Submodels can have different life cycles.

Note 3: The concept of template and instance applies to submodels.

- [SOURCE: Glossary Industrie 4.0]

submodel element
element suitable for the description and differentiation of assets
Note 1: extends the definition of properties

Note 2: could comprise operations, binary objects

- [SOURCE: Glossary Industrie 4.0]

22 | Terms, Definitions and Abbreviations

system
interacting, interrelated, or interdependent elements forming a complex whole

- [SOURCE: IEC TS 62443-1-1:2009, 3.2.123]

technical functionality

functionality of the Administration Shell that is exposed by an application programming interface (API) and that is
creating added value to the respective assets(s).

Note: can consist of single elements, which are also known as functions, operations, methods, skills.

- [SOURCE: according [18]]

template

specification of the common features of an object in sufficient detail that such object can be instantiated using it

Note: object can be anything that has a type

- [SOURCE: according ISO/IEC 10746-2]

type
hardware or software element which specifies the common attributes shared by all instances of the type

- [SOURCE: IEC TR 62390:2005-01, 3.1.25]

view

projection of a model or models, which is seen from a given perspective or vantage point and omits entities that are not
relevant to this perspective

- [SOURCE: unified modelling language - UML]

Terms, Definitions and Abbreviations | 23

2.2 Abbreviations

Abbreviation Description

AAS Asset Administration Shell

AASX Package file format extension for the AAS

AML AutomationML

API Application programmers interface

BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V.
BLOB Binary Large Object

CDD Common Data Dictionary

GUID Globally unique identifier

14.0 Industrie 4.0

ID Identifier

IEC International Electrotechnical Commission

IRDI International Registration Data Identifier

IRI Internationalized Resource Identifier

I1ISO International Organization for Standardization

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OPC Open Packaging Conventions (ECMA-376, ISO/IEC 29500-2)
OPC UA Unified Architecture for the Object Linking and Embedding for Process Control
PDF Portable Document Format

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comment

SOA Service Oriented Architecture

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

VDE Verein Deutscher Ingenieure

VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.
VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

W3cC World Wide Web Consortium

XML eXtensible Markup Language

ZIP archive file format that supports lossless data compression
ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V.

3 Basic Concepts and Leading Picture

Basic Concepts and Leading Picture | 25

3.1 Basic Concepts

Many concepts for Industrie 4.0 and smart manufacturing are already existing. The most important ones are summarised
in the informative Annex A.

3.2 Leading Picture

The leading use case in this document is the exchange of an Asset Administration Shell including all its auxiliary
documents and artifacts from one value chain partner to another. This is, in this document we do not deal with the use
case of already deployed Asset Administration Shells running in a specific infrastructure but only with file exchange
between partners.

Figure 1 Use Case File Exchange between Value Chain Partners

=~ % Supplier > EE] Integrator

Internal Internal
Publish Receive Composite
Ty pe machine
' 1 A2 —_ A3 Fﬂ
T — — > T \
rzlﬂ B2 — B3 B4 C1
— — > —>
T T NN
product . J

? ty pe Zﬁ
Composite ’
D2 —_ D3 Instance machine
o 1] o D

d/o| b consolidate d 3

\ 4

°
do /b jo Tk o—T—ph
M 4/0| b — /ol b 4
delivery ‘)

14.0-
platform RE

Picture Hoffmeister, Jochem, according Epple, 2016

Figure 1 shows the overall picture. It depicts two value chain partners; "Supplier is going to provide some products,
"Integrator" is going to utilize this products in order to build a machine. Two kinds of Administration Shells are being
provided; one for the asset being the type of a product, one for the assets being the actual product instances. "Supplier"
and "Integrator" are forming two independent legal bodies (Figure 2).

26 | Basic Concepts and Leading Picture

Figure 2 File Exchange between two value chain partners

i 1 [—

!. | | | [— — === === |

I | I I | |

[| D2/D3 I AAS D4 |

X Export Import .

' =" = i

! [| | | I |

! @ 11 @ ! i

! B I !

! go il | User of | | User of I do 1] |

! d/ol B | partner "A" [[partner "B" | d/ol b |

! i | ! i

| System boundary . | System boundary .

. l4.0infrastructure of partner "A" | I I 14.0 infrastructure of partner "B" |

e — e ———_—_. — I I e — e ———_—_. —

Organizational boundary of partner "A" I [Organizational boundary of partner “B"

- w— m— m— — — — — m— m— — — — — e ¢ e ¢ o ¢ — . e— — m— — ¢ — ¢ — — — — -

Source: Plattform Industrie 4.0

The exchange of files needs to fulfil some requirements with respect to usability and security. There needs to be a bilateral
agreement on security constraints to be fulfilled for the transfer and usage of the files. This is explained in more detail in
Clause 6.

For usability a container format for exchanging files is used and a corresponding structure is defined (see Clause 7). This
predefined structure helps the consumer to understand the content of the single files. This is important because an
AssetAdministration Shell specification can be spread across several files. Additionally, the container may contain
auxiliary files references by the AAS or even executable code.

4 The Metamodel of the Administration Shell

28 | The Metamodel of the Administration Shell

4.1 Introduction

This clause specifies the information metamodel of the AssetAdministration Shell. Before doing so some general aspect
of the handling of asset types and instances are described (see Subclause 4.2 Types and Instances). Another very important
aspect of the AAS is the identification aspect, see Subclause 4.3. In Subclause 4.5 aspects of event handling are discussed.
In Subclause 4.3 it is described which elements to use for modelling composite 14.0 Components.

An overview of the metamodel of the Asset Administration Shell is given in Subclause 4.6. In Subclause 4.7 the classes
are described in detail together with all their attributes.

The metamodel for security aspects of the Administration Shell is described in Clause 6.

The legend for understanding the UML diagrams and the table specification of the classes are found in Annex B and
Annex C.

4.2 Types and Instances

4.2.1 Life Cycle with Asset Types and Instances

Industrie 4.0 utilizes an extended understanding of asset, comprising elements such as factories, production systems,
equipment, machines, components, produced products and raw materials, business processes and orders, immaterial assets
(such as processes, software, documents, plans, intellectual property, standards), services and human personnel and more.

The RAMI4.0 model [3] features one, generalized life-cycle axis, which was derived from IEC 62890. The basic idea is
to distinguish for all assets within Industrie 4.0 between possible types and instance. This makes it possible to apply the
type/instance distinction for all elements such as material type/material instance, product type/product instance, machine
type/ machine instance and more. Business related information will be handled on the '‘Business’ layer of the RAMI4.0
model, as well, covering also order details and workflows, again with types/ instances.

Table 1 Life cycle phases and roles of type and instance

Phase Description

Type Development Valid from the ideation/ conceptualization to first prototypes/ test.
The 'type' of an asset is defined, and distinguishing properties and
functionalities are defined and implemented. All (internal) design
artefacts are created, such as CAD data, schematics, embedded
software, and associated with the asset type.

Usage / | Ramping up production capacity. The ‘external' information
Maintenance associated to the asset is created, such as technical data sheets,
marketing information. The selling process starts.

Instance Production Asset instances are created/ produced, based on the asset type
information. Specific information about production, logistics,
qualification and test are associated with the asset instances.

Usage / | Usage phase by the purchaser of the asset instances. Usage data is
Maintenance associated with the asset instance and might be shared with other
value chain partners, such as the manufacturer of the asset instance.

Also included: maintenance, re-design, optimization and de-
commissioning of the asset instance. The full life-cycle history is
associated with the asset and might be archived/ shared for
documentation.

Table 1 gives an overview of the different life cycles phases and the role of type and instance in these phases: The most
important relationship is between asset types and asset instance. This relationship should be maintained throughout the
life of the asset instances. By this relationship, updates to the asset types can be forwarded to the asset instances, either
automatically or on demand.

The Metamodel of the Administration Shell | 29

Note: for the distinction of 'type' and 'instance’, the term 'kind' is used in this document.

The second class of relationships are feedback loops/ information within the life-cycle of the asset type and instance. For
product assets, for example, information on usage and maintenance of product instances can improve the manufacturing
of products as also cause design improvements for the (next) product type.

The third class of relationships are feedforward/ information exchange with assets of other asset classes. For example,
sourcing information from business assets can influence design aspects of products; or, the design of the products affects
the design of the manufacturing line.

Note: For an illustration of the second/ third class of relationships confer the NIST model, as well.

A forth class of relationships are between asset of different hierarchy levels. For example, these could be the (dynamic)
relationships between manufacturing stations and products being currently produced. These could be also the
decompositions of production systems in physical, functional or safety hierarchies. By this class of relationships,
automation equipment is explained as a complex, interrelated graph of automation devices and products, performing
intelligent production and self-learning/ optimization tasks.

4.2.2 Example

The following figure gives an example for handling of asset types and asset instances, handling some exemplary
information as well. Further explanation will follow in the next clauses.

Figure 3 Exemplary types and instances of assets represented by multiple AAS

class AAS and Asset Types and Instances/

«AAS»
http://T1.com
«AAS» kind = Instance
http://T0215551AA.com) assetld = 0215551AAA_T1
denveEFfro_m_-——” MeasuredTemperature = 60
kind = Type ko= =~~~ «Reference»
assetld = 0215551AA
ValueRange =-40 °C/ 140 °C
ProductClass = Component
Manufacturer = Bosch
description (EN) = precise and fast temperature measurement
< ———— derivedFrom «AAS»
\\\\\\\\ http://T2.com
«Reference»
kind = Instance
assetld = 0215551AAA_T2
MeasuredTemperature = 100

Note: The example is simplified for ease of understanding and does only roughly comply to the metamodel as it is
specified in Clause 4. The id handling is simplified as well: the names of the classes correspond to the unique
global identifier of the AASs.

Note: In the context of Platform Industrie 4.0 types and instances typically refer to "asset types” and “asset
instances”. When referring to types or instances of an AAS this is explicitly denoted as “AAS types” and “AAS
instances” to not mix up both. AAS types are synonymously used with the term “AAS template”.

Note: Please refer to Clause 2 for the IEC definition of types and instances. For the scope of this document, there
is no full equivalency between these definitions and the type/ instance concepts of object oriented
programming (OO).

There shall be a concrete asset type of a temperature sensor and two uniquely identifiable physical temperature sensors
of this type. The intention is to provide a separate AAS for the asset type as well as for every single asset instance.

In the example the first sensor has the unique ID “0215551AA T1” and the second sensor has the unique ID
“0215551AA _T2”. The AAS for the first sensor has the unique URI “http://admin-shell.io/T1” and the AAS for the
second sensor has the unique URI “http://admin-shell.io/T2”. The kind for both is “Instance”. The example shows that
the measured temperature at operation time of the two sensors is different: for T1 it is 60 °C, for T2 it is 100 °C. For the

30 | The Metamodel of the Administration Shell

time-being we ignore the relationship “derivedFrom” of the two AAS “T1” and “T2” with AAS “http://admin-
shell.io/T0215551AA”.

Note: Even though the HTTP scheme is used in the example, the URIs do not need to be valid URLs and therefore do
not need to point to accessible content.

Note: The unit can be obtained by the semantic reference of the element “measuredTemperature”. For simplicity
this is not shown in the example.

These two asset instances do have a lot of information they share: the information of the asset type (in this example a
sensor type). For this asset type an own AAS is created. The unique ID for this AAS is “http://admin-
shell.io/T0215551AA”, the unique id of the sensor type is “0215551AA”. The kind in this case is “Type” and not
“Instance”. The information that is the same for all instances of this temperature sensor type is the ProductClass

“w_»

(="Component”), the manufacturer (="Bosch”) and the English Description “=’precise and fast temperature
measurement’” as well as the value range “-40 °C / 140 °C”.

Now the two AAS of the two asset instances may refer to the AAS of the asset type “0215551AA” using the relationship
attribute “derivedFrom”.

Note: "attribute" refers in the UML sense to the property or characteristic of a class (instance).

Note: Typically, if a specific asset type does exist, it exists in time before the respective asset instances.

Note: An AAS is used synonym to an AAS instance. An AAS may be realized based on an AAS type. AAS types are
out of scope of this document.

Note: In public standardization the AAS Types might be standardized. However, it is much more important to
standardize the property types (called property definitions or concept descriptions) or other submodel element
typed as well as complete submodel types because those can be reused in different AAS.

Note: In the domain of internet of things (IoT), asset instances are typically denoted as “Things” whereas asset
types are denoted as “Product”.

4.2.3 Asset Administration Shell Types and Instances

In the previous clause type and instances of assets were explained. Obviously the question then comes up how to
harmonize AAS as well as AAS types. In our example it can be seen that the attributes “assetld” and “kind” as well as
the global identifier (id, represented as name of the class) are present for all AAS. However, if there is no standard, it is
not clear that the semantics of “id”, “assetId” and “kind” are the same for all AAS and it is not clear, which of the attributes
are mandatory and which are specific for the asset (type or instance). This is illustrated in Figure 4.

This is the task of this document: The definition of a metamodel that defines which attributes are mandatory and which
are optional for all AAS. The Platform Industrie 4.0 metamodel for AssetAdministration Shells is defined in Clause 4.

Note: This approach ensures that requirement tAAS-#19 is fulfilled. Another approach could have been to define
two metamodels: one for asset types and one for asset instances. However, the large set of similarities
motivated to go with one metamodel.

Note: The metamodel itself does not prescribe mandatory submodels. This is another step of standardization similar
to the prescription of submodels of AAS Type level.

Note: An AAS type shall be realized based on the metamodel of an AAS as defined in this document. This Metamodel
is referred to as the “AAS Metamodel”.

Note: It is not mandatory to define an AAS type before defining an AAS (instance). An AAS instance that does not
realize an AAS type shall be realized based on the Metamodel of an AAS as defined in this document.

The Metamodel of the Administration Shell | 31

Figure 4 Exemplary relations between metamodel of AAS, AAS types and AAS instances

class AAS Metamodel and AAS Types /
«AAS»
http://T0215551AA.com «AAS»
http://T1.com
kind = Type
assetld = 0215551AA derivedFrom kind = Instance
ValueRange = -40 °C/ 140 °C ******«Ee?e;;c; ****** assetld = 0215551AAA_T1
ProductClass = Component MeasuredTemperature = 60
Manufacturer = Bosch
description (EN) = precise and fast temperature measurement - -
- I
- |
7 T -
. i AN - \
< ! - !
- | > I
e | _-T N I
conformant to s
conformant to } o derivedFrom }
P St «Reference» I
P 7 -7 N |
- N
- -
- - ! A }
v - conformant to \ |
-7 \ «AAS» |
«AAS Metamodel» - .
‘ AAS | hitp://T2.com conlorﬁnamm
! -
conformant to a kind = Instance |
R |TT T T T T T T T T assetld = 0215551AAA_T2 |
+ asetd I MeasuredTemperature = 100 I
+ derivedFrom: Reference [0..1] ~~_ | |
+ description: langString [0..1] S~— | }
T~ !
T~—o I < !
AN ~~o I \ I
N T= \ I
conformant to S~ \ |
< ! conformant to
~ ! == conformant to !
~ | ~-~_ \ I
S S-~_ \ I
~ \7 S~ \ I
‘ «AAS Type» DT A\ \Vi
http://TemperatureSensor.com T-=
— S~ «AAS Type»
+ kind = Type http://TemperatureSensorlnstance.com
Fasetd o derivedFrom + kind = Instance
+ VvalueRange KT TTT T T T T - N id
+ ProductClass = Component «Reference» asse
+ MeasuredTemperature
+ Manufacturer
+ description

4.3 Composite 14.0 Components

As described in Clause 4.2.1 there is a class of relationships between assets of different hierarchy levels. By this class of
relationships, automation equipment is explained as a complex, interrelated graph of automation devices and products,
performing intelligent production and self-learning/ optimization tasks.

Details and examples for composite 14.0 Components can be found in [12].
The following modelling elements in the AAS metamodel can be used to realize such composite 14.0 Components:

¢ RelationshipElement — used to describe relationships between assets and other elements
o Asset/billOfMaterial — A complex asset is composed out of other entities and assets. These entities and assets
being part of the asset are specified in the bill of material.
Note: The submodel template defining the structure of such a bill of material is not predefined by the AAS
metamodel but is assumed to contain Entity elements.
o Not every entity (Entity) that is part of the bill of material of an asset has necessarily its own asset administration
shell. As described in [12] self-managed entities are distinguished from co-managed entities (Entity/entityType).
o Self-Managed Entities have their own AAS. This is why a reference to this asset is specified as well
(Entity/asset). Additionally, further property statements (compare to [15]) can be added to the asset that
are not specified in the AAS of the asset itself because they are specified in relation to the complex 14.0
Component only.
o For co-managed entities there is no separate AAS. The relationships and property statements of such
entities are managed within the AAS of the composite 14.0 Component.

Figure 5 shows an extract of the metamodel that is introduced later containing the elements being the moste important to
describe composite 14.0 Components.

32 | The Metamodel of the Administration Shell

Figure 5 Extract from Metamodel for Composite 14.0 Components

class Composite Asset Administration Shell - used Elements /

HasDataSpecification
Identifiable <= —|
AssetAdministrationShell |
|
+ security: Security -—-
+ derivedFrom: AssetAdministrationShell* [0..1]
1
HasDataSpecification
Identifiable
Asset
+ kind: AssetKind
+ billOfMaterial: Submodel* [0..1]
+ assetldentificationModel: Submodel* [0..1]
) : \
| ' \
| ' |
: : \y 0.*
'
! . HasDataSpecification
: ' HasKind
| ! HasSemantics
| Identifiable
| billOfMaterial contains Qualifiable
| Entities Ssubmodel
|
|
I .
| '
I '
| '
I .
| '
I ' 0.
'
I . HasDataSpecification
Entity HasKind
HasSemantics
+ statement: SubmodelElement [0..%] Qualifiable
+ entityType: EntityType —> Referable
+ t: Asset* [0..1
asset: Asset [] «abstract»
SubmodelElement

«enumeration» RelationshipElement
EntityType

- + first: Referable*
CoManagedEntity + second: Referable*
SelfManagedEntity

4.4 ldentification of Elements

4.4.1 Overview

Identifiers are needed according to [4] for the unique identification of many different elements within the domain of smart
manufacturing. For this reason, they are a fundamental element of a formal description of the Administration Shell.
Especially, identification is at least required for:

e Asset Administration Shells,

e assets,

e submodel instances and submodel templates,

e property definitions/concept descriptions in external repositories, such as eCl@ss or IEC CDD
Identification will take place for two purposes:

(1) to uniquely distinguish all elements of an Administration Shell, and

The Metamodel of the Administration Shell | 33

(2) to relate elements to external definitions, such as submodel templates and property definitions, in order to bind
a semantics to these data and functional elements of an Administration Shell.

4.4.2 What ldentifiers Exist?
In [4], [20] two standard-conforming global identification types are defined:

(a) IRDI - 1SO29002-5, ISO IEC 6523 and ISO IEC 11179-6 [20] as an Identifier scheme for properties and
classifications. They are created in a process of consortium-wise specification or international standardization.
To this end, users sit down together and feed their ideas into the consortia or standardization bodies. Properties
in ISO, IEC help to safeguard key commercial interests. Repositories like eCl@ss and others make it possible to
standardise a relatively large number of Identifiers in an appropriately short time.

(b) IRI-IRI (Rfc 3987%) or URI and URL according to RFC 39867 as identification of assets, Administration Shells
and other (probably not standardized, but globally unique) properties and classifications.

The following is also permitted:

(c) Custom - Internal custom Identifiers such as GUIDs (globally unique Identifiers®), which a manufacturer can
use for all sorts of in-house purposes within the Administration Shell.

This means that the URIS/URLSs and internal custom Identifiers can represent and communicate manufacturer-specific
information and functions in the Administration Shell and the 4.0 infrastructure just as well as standardized information
and functions. One infrastructure can serve both purposes.

CLSID are URIs for GUIDs. They start with a customer specific schema. So Custom should really only be used if the
custeomer specific identifier is no IRDI nor an IRI.

Besides the global Identifiers there are also Identifiers that are unique only within a defined namespace, typically its
parent element. These Identifiers are also called local identifiers. Example: Properties within a submodel have local
identifiers.

Besides absolute URIs there are also relative URISs.

See also DIN SPEC 91406 [43] for further information on identification of physical objects.

4.4.3 ldentifiers for Assets and Administration Shells

For the domain of smart manufacturing, the assets need to be identified worldwide unique [4] [20] by the means of
identifiers (IDs). The Administration Shell has a unique ID, as well.

! https://tools.ietf.org/html/rfc3987
2 https://tools.ietf.org/html/rfc3986

3 https://en.wikipedia.org/wiki/Universally_unique_identifier

34 | The Metamodel of the Administration Shell

Figure 6 The Administration Shell needs a unique ldentifier, as well as the asset being described (Modified figure
from [4])

14.0 compliant communication

— 14.0 Component I

Propertes, with IDs

Propertes, with IDs

Propertes, with IDs Complex data, Documents,

with IDs with IDs

Asset, e.g. electrical axis system
Unique ID
|
I | | |
s o T 3
>~ y < 2
N - ~— 2
I Jl. .&f% : Ny B ;M//
~ ~ et

Source: Plattform Industrie 4.0

An Administration Shell represents exactly one asset, with a unique asset ID. In a batch based production, the batches
will become the asset and will be described by a respective Administration Shell. If a set of assets shall be described by
an Administration Shell, a unique ID for the composite asset needs to be created [12].

The ID of the asset needs to comply the restrictions for global Identifiers according [4][20]. If the asset is featuring further
identifications, serial numbers and such, there are not to be confused with the unique global Identifiers of the asset itself.

4.4.4 Which ldentifiers to use for which Elements

Not every Identifier is applicable for every element of the UML model; the following table therefore puts constraints on
the various entities, which implement "ldentifiable™ or "hasSemantics". Attributes relate to the metamodel in Clause 4.6
and Clause 4.7.

Table 2 Identifiables, attributes and allowed identifiers

Allowed Identifiers
Identifiable Attribute (recommended or Remarks

typical)

mandatory
Asset id IRI (URL)

AdministrationShell Typically, URLs will be used

idShort string mandatory®

Asset id IRI mandatory

4 Such additional local identifiers are contained in the submodel “assetldentificationModel”.

° Note: In version V1.0 of this specification idShort was optional for Identifiables. This changed in V2.0: now idShort is
mandatory for all Referables.

The Metamodel of the Administration Shell | 35

Allowed Identifiers

Identifiable

Attribute REMERS

(recommended or

typical)

Typically, URLs will be used [4]
idShort string mandatory
mandatory
id IRDL, IRI (URI) IRDI, if the defined submodel is standardized
and an IRDI was applied for it
mandatory
Submodel with kind = idShort string Typically used as idShort for the submodel of
Template kind Instance as well
optional
) The semantic id might refer to an external
semanticld IRDI, IRI (URI) information source, which explains the
formulation of the submodel (for example an
PDF if a standard)
id IRI (URI), Custom mandatory
mandatory
idShort string Typically, the idShort or English short name of
the submodel template referenced via
Submodel with kind = semanticld
Instance recommended
The semantic id may be either a reference to a
semanticld IRDI, IRI (URI) submodel with kind = Template (within the
same or another AAS) or it can be an external
reference to an external standard defining the
semantics of the submodel.
mandatory
idShort string Typically the English short name of the element
referenced via semanticld
SubmodelElement mandatory
semanticld IRDI,IRI (URD), | jink to the conceptDescription or the concept
Custom definition in an external repository via a global
id
mandatory
ConceptDescription needs to have a global id.
id Custom or IRDI If the concept description is a copy from an
external dictionary like eCl@ss it may use the
same global id as it is used in the external
dictionary.
ConceptDescription mandatory
idShort string
e.g. same as English short name
optional
i f . S
IsCaseO IRDI, IRI (URI) links to the concept definition in an external
repository the concept description is a copy
from or that it corresponds to
View idShort string mandatory

36 | The Metamodel of the Administration Shell

Allowed Identifiers
Identifiable Attribute (recommended or Remarks
typical)
recommended
. IRDI, IRl (URI),
semanticld Custom links to the view definition in an external
repository
recommended

Links to the qualifier type definition in an

IRDI, IRI (URD), external repository

Qualifier semanticld Custom
IRDI, if the defined qualifier type is

standardized and an IRDI was applied for it

4.4.5 How are New ldentifiers Created?

Following the different identification types from Clause 4.4.3, it can be stated:

(a) IRDIs are assumed to be already existing by an external specification and standardization process, when it comes
to the creation of a certain Administration Shell. For bringing such IRDI Identifiers into life, refer to Clause 4 of
the document [4].

(b) URIs and URLs can easily be formed by developers themselves, also on the fly when creating a certain
Administration Shell. All that is needed is a valid authority, for example of the company, and to make sure that
the way the domain (e.g. admin-shell.io) is organised ensures that the path behind the host name is reserved in a
semantically unique way for these Identifiers. In this way, each developer can create an arbitrary URI or URL
by combining the host name and some chosen path, which only needs to be unique in the developer's
organisation.

(c) Custom identifiers can also be easily formed by developers themselves. All that is necessary is a corresponding
programmatic functionality to be retrieved. It is necessary to ensure that internal custom identifiers can be clearly
distinguished from (a) or (b).

(d) Local identifiers can also be created on the fly. They have to be unique within their namespace, usually defined
by the parent relationship.

4.4.6 Best Practice for Creating URI ldentifiers

The approach for semantics and interaction for 14.0 components [17] suggests the use of the following structure for URIsS,
which is slightly modified here. The idea is to always structure URIs following a scheme of different elements. However,
this is just a recommendation and not mandatory to be used.

Table 3 Proposed structure for URIs

o ntax
Element Description Synta
component
Organisation Legal body, administrative unit or company issuing the ID A
Organisational subunit/ . L L L
g Sub entity in organisation above, or released specification or publication of
Document 1D/ organisation above P
Document subunit g '
. Submaodel of functional or knowledge-wise domain of asset or Administration
Submodel / Domain-1D . g P
Shell, the Identifier belongs to.
Version Version number in line with release of specification or publication of Identifier | P
. Revision number in line with release of specification or publication of
Revision Identifier P

6 URLs are also URIs

The Metamodel of the Administration Shell | 37

Property / Element-1D

Property or further structural element ID of the Administration Shell P

Instance number

publication

Individual numbering of the instances within release of specification or

In the table, syntax component "A" refers to authority of RFC 3986 (URI) and namespace identifier of RFC 2141
(URN); "P" refers to path of RFC 3986 (URI) and namespace specific string of RFC 2141 (URN).

<AAS URI>

.2
]

<scheme> ::= avalid URI scheme

<authority> ::= <Organisation>

<scheme> “:” <authority> [<path>]

<path> ;2= <subunit> <domain> <release> <element>

<subunit>

<domain>::= [(“/” | “:”) <Submodel / Domain-ID>

<release> ::= [(“/” | “:”) <Version> [(“/” | “:”) <Revision> J*]

<element>

u= [(“/” | “:”) <Organisational Subunit/Document ID/Document subunit>]*

2= [(Y7”] “” | “#”) (<Property/Element-ID> | <Instance number>)* |

Using this scheme, valid URNs and URLSs can be created, both being URIs. For the use of Administration Shells, URLs
are preferred, as functionality (such as REST services) can be bound to the ldentifiers, as well. Examples of such
Identifiers are given in Table 4.

Table 4 Example URN and URL-based Identifiers of the Administration Shell

Identifier

Administration Shell
ID

Description

ID of the
Administration Shell

Property class

Basis

Examples

urn:zvei:SG2:aas:1:1:demo11232322
http://www.zvei.de/SG2/aas/1/1/dem011232322

Submodel ID (Type)

Identification of type
of submodel

Selected submodels
are basis, others free

urn:GMA:7.20:contractnegotiation:1:1

http://www.vdi.de/gma720/contractnegotiation/1/1

Submodel ID
(Instance)

Identification of the
instance of the
submodel

Free

urn:GMA:7.20:contractnegotiation:1:1#001

http://www.vdi.de/gma720/
contractnegotiation/1/1#001

Property/parameter/st
atus type IDs

Identification of the
property, parameter
and status types

Domain-specific

urn:PROFIBUS:PROFIBUS-PA:V3-
02:Parameter:1:1:MaxTemp

http://www.zvei.de/SG2/aas/1/1/demo11232322/maxt
emp

Property/parameter/st

urn:PROFIBUS:PROFIBUS-PA:V3-

atus instance IDs | Identification of the 02:Parameter:1:1: MaxTemp#0002
property, parameter | Domain-specific
(not used by | and status instance http://www.zvei.de/SG2/aas/1/1/dem011232322/maxt
metamodel) emp#0002
Note: the last row of the table is only used for completion; the metamodel does not foresee identifiers for

property/parameter/status instances.

38 | The Metamodel of the Administration Shell

4.4.7 Creating a Submodel Instance based on an Existing Submodel Template

In order to instantiate an existing submodel template, there should be a public specification of the submodel template, e.g.
via publication by Plattform Industrie 4.0. As a special case, instantiating a submodel from a non-public submodel
template, such as a manufacturer specification, is also possible.

As of November 2019, there are no finally published standardized submodel templates available, but some examples are
described in [6], which provides simple tables listing properties in a predefined hierarchy.

In each submodel template, the Identifiers of property definitions to be used as semantic references are already
predefined. An instantiation of such submodel merely has to create properties with a semantic reference to the property
definitions and attach values to these properties.

In such case, the Identifier for the existing submodel template is also predefined, probably as a URL, and is to be used as
semantic reference for the submodel instance.

What remains is to create an Identifier of the submodel instance itself, which is in the regular case an URI/URL.

Note: for maintaining integrity over multiple Administration Shells, appropriate referencing (derivedFrom) between
submodel instances and submodel templates has to occur, as well as for submodel instances of interlinked
asset types and instances. A possible framework could then monitor and synchronize changes to the value
statements of the submodel instances according to user requirements (automatic synchronization is not
always desired).

4.4.8 Can New or Proprietary Submodels be Formed?

It is in the interest of Industrie 4.0 for as many submodels as possible, including free and proprietary submodels, to be
formed (— [4], “Free property sets”). A submodel can be formed at any time for a specific Administration Shell of an
asset. For this purpose, the provider of the Administration Shell can form in-house Identifiers for the type and instance of
the submodel in line with Section 4.4.5. All 14.0 systems are called on to ignore submodels and properties that are not
individually known, and simply to “overlook” them. For this reason, it is always possible to deposit proprietary — e.g.
manufacturer-specific or user-specific — information, submodels or properties in an Administration Shell.

Note: it is in the intention of the Administration Shell, that proprietary information is included as well. For example to
link to company-wide identification schemes or information required for company-wide data processing. By
this, a single infrastructure can be used to transport standardized and proprietary information at the same
time; this conveys the introduction (and later standardization) of new information elements as well.

Note: if a submodel instance is formed without a clear relation to a submodel template or semantic definition, this
will be of limited use for other users/ accessing systems of the Administration Shell, as these cannot grasp
the semantic context of the data contained.

4.4.9 Usage of Short ID for Identifiable Elements

The Administration Shell fosters the use of worldwide unique identifiers to a large degree. However, in some cases, this
may lead to inefficiencies. An example might be referring to a property, which is part of a submodel which is part of an
Administration Shell and each of these identified by global Identifiers [4]. For example, in an application featuring a
resource oriented architecture (ROA), a worldwide unique resource locator (URL) might be composed of a series of
segments, which in turn do not need to be worldwide unique:

The Metamodel of the Administration Shell | 39

Figure 7 Motivation of exemplary identifiers and idShort

Entity: Identifier Identier Identifier + Identifier
ntty: Asset AdminShell Submodel SubmodelElement

£ | http://pk.festo. http://smart.fest http://smart.fest

.dx.emp ary com/3S7PLPGN o.com/aas/3434 o.com/submodel not identifiable

Ia: FL2 3433432434 $/960594795

Exemplary http://pk.festo. http://smart.fest

id respectively com/3S7PLPGN o.com/aas/3434 energyefficiency / set-point

idShort: FL2 3433432434
I & M =represented by <— = belongs to / = chained together
e : Source: Plattform Industrie 4.0

In order to allow such efficient addressing of elements by an API of an Administration Shell, idShort is provided for a set
of classes of the metamodel, which inherit from abstract class Referable, in order to refer to such dependent elements (—
4.6). However, an external system addressing resources of an Administration Shell is required to check the respective
semantics by asserting semanticld first, before accessing elements by id or idShort (— 4.7.2).

4.5 Events

4.5.1 Overview

Events are a very versatile mechanism of the AAS. In the following sections, first some use-cases for events are described.
Different types of events are summarized in order to depict requirements. A SubmodelElement “Event” is introduced,
which is able to declare events of an AAS. The general format of event messages is specified.

4.5.2 Brief Use Cases for Events Used in Asset Administration Shells

e An integrator has purchased a device. Later in time, the supplier of the device provides a new firmware. The
integrator wants to detect the offer of a new firmware and wants to update the firmware after evaluating its
suitability ("“forward events"). The mechanism is, that a dependent AAS ("D4") detects events from a parent or
type AAS ("D1"), which is described by the derivedFrom relation.

e An integrator/ operator operates a motor purchased from a supplier. During operation, condition monitoring
incidents occur. Both parties agree on a business model providing availability. So, the supplier wants to monitor
status of devices which are further in the value chain ("reverse events").

40 | The Metamodel of the Administration Shell

Figure 8 Forward and Revers Events

g @3 Supplier y .E. Integrator

Internal
Publish Receive
D1 | forward events > D4
o/l b o/l b
D
q/o|p o|lp
go D go D
product i i
I—’ d/0o| b — d/0o| b 4
delivery

product 'DE" . 'DE" A

delivery

< reverse events b
= =

An operator is operating a certain 14.0 component over time. Changes occasionally occur to these 14.0
components from different systems. For documentation and auditing, changes to this 14.0 component shall be

tracked. This can be achieved by recording events over time.

Figure 9 Tracking of Changes via Events

) % % Operator

Outer (message)

infrastructure ’—> 8

]

_]

E Maintenance Upgrade new product .

]

=l >
Operation of machine asset(years) ©

System boundary AAS + asset

Outer system

An operator is operating different 14.0 components, which are deployed to manufacturer clouds. The operator
wants to integrate data from these components, according to DIN SPEC 92222. Therefore, information needs to

be forwarded to the operator cloud ("value push").

The Metamodel of the Administration Shell | 41
Figure 10 Value Push Events across Clouds

value push

Cloud "Supplier A" Cloud "Supplier B" Cloud "Operator"

[;?J
1=

!

g/o| p

4.5.3 Input and Output Directions of Events

It may be relevant to distinguish between input and output directions of an event with respect to the observed model, the
respective Referable.

Direction Descriptions

Output The event is monitoring the Referable it is attached to. An outer message
infrastructure, e.g. by OPC UA or MQTT or AMQP, will transport these
events to other AASes and further outer systems and users.

Input The software entity, which implements the respective Referable, can handle
incoming events. These incoming events will be delivered by an outer
message infrastructure, e.g. by OPC UA or MQTT or AMQP, to the
software entity of the Referable.

4.5.4 Types of Events

According to the above use-cases, different types of events are possible. The following table gives an impression on
possible event types. Each event type will be identified by a semanticld and will feature a specialized payload.

Group Direction” Motivation / conditions
Structural changes of the Out e CRUDS? of Submodels, Assets, SubmodelElements and such
AAS
In e Detect updates on parent/ type/ derivedFrom AAS
Updates of Properties and Out e update of values of SubmodelElements
dependent attribute e timestamped updates and time series update

o explicit triggering of an update event

Operation of AAS Out e monitoring of (long-lasting) execution of OperationElement
and updating events while execution

7 see below

8 Create, Retrieve, Update, Delete

42 | The Metamodel of the Administration Shell

Monitoring, ~ conditional, Out e e.g. when voiding some limits (e.g. stated by Qualifiers with
calculated events expression semantics)
Infrastructure events Out e Booting, Shutdown, out of memory .. of software entity of

respective Referable (AAS, Submodel)
Repository events In/ Out ¢ Change of semantics of IRDIs (associated concept definition)

Security events Out e logging events
e access violations, non-fitting roles & rights, denial of service,

Alarms & events Out e alarms and events management analog to distributed control
systems (DCS)

Custom event types

In any case, it is possible to define custom event types by using a proprietary, but worldwide unique, semanticld for this
event type. Such customized events can be sent or received by the software entity of the respective Referable, based on
arbitrary conditions, triggers or behavior. However, the general format of the event messages needs to comply this
specification, but the payload might be completely customized.

Event scopes

Events can be stated with an observableReference to the Referables of AAS, Submodels, SubmodelElementCollections
and SubmodelElements. These Referables are defining the scope of the events, which are to be received or sent.

Event attached to .. Scope

AAS This event is monitoring/ representing all logical elements of an
Administration Shell, such as AAS, Asset, Views, Submodels.

Submodel This event is monitoring/ representing all logical elements of the respective
Submodel und all logical dependents.

SubmodelElementCollection This event is monitoring/ representing all logical elements of the respective
SubmodelElementCollection und all logical dependents.

SubmodelElement (others) This event is monitoring/ representing a single atomic SubmodelElement,
e.g. a data element which might include the contents of a Blob or File.

4.5.5 Possible Future Attributes of an Event

Up to now the metamodel offers a very simple modeling of an event. Besides the inherited attributes that are available for
every Referable only one attribute for referencing the data or other elements being observed is added. This is expected to
be a good starting point.

For future extensions other attributes like explained in the following tables.

Attributes of the event element

Class: EventElement (non- normative, only for discussion)

Explanation: Defines the necessary information for sending or receiving events.

Inherits from: SubmodelElement

Attribute Explanation Kind Card.

(*=mandatory)

(+=inherited)

The Metamodel of the Administration Shell | 43

Class:

idShort+

EventElement (non- normative, only for discussion)

Identification of the element itself. Provides a
unique identification for a possible event flow
scheduling.

string

attr

semanticld+

Semantic identification of the event type.

Reference

attr

observableReference

Reference to the Referable, which defines the
scope of the event. Can be AAS, Submodel,
SubmodelElementCollection or
SubmodelElement.

Reference

attr

direction

Can be { Input, Output }.

Enum

attr

state

Can be { On, Off }.

Enum

attr

messageTopic

Information for the outer message infrastructure
for scheduling the event to the respective
communication channel.

string

attr

messageBroker

Information, which outer message infrastructure
shall handle messages for the EventElement.
Refers to a Submodel,
SubmodelElementCollection, which contains
DataElements describing the proprietary
specification for the message broker.

Note: for different message infrastructure, e.g.
OPC UA or MQTT or AMQP, these proprietary
specification could be standardized by having
respective Submodels.

Reference

attr

0.1

lastUpdate

Timestamp in UTC, when the last event was
received (input direction) or sent (output
direction).

xsd:dateTime

attr

0.1

mininterval

For input direction, reports on the maximum
frequency, the software entity behind the
respective Referable can handle input events.

For output events, specifies the maximum
frequency of outputting this event to an outer
infrastructure.

Might be not specified, that is, there is no
minimum interval.

xsd:dateTime

attr

0.1

maxInterval

For input direction: not applicable.

For output direction: maximum interval in time,
the respective Referable shall send an update of
the status of the event, even if not other trigger
condition for the event was not met.

Might be not specified, that is, there is no
maximum interval.

xsd:dateTime

attr

0.1

Attributes of the event message

Events sent or received by AAS always comply to a general format. Exception: events exchanged in the course of an 14.0
interaction pattern.

44 | The Metamodel of the Administration Shell

Class: EventMessage (non- normative, only for discussion)

Explanation: Defines the necessary information of an event instance sent out or received.

Inherits from: -

Attribute Explanation

*=mandatory)

source Reference to the source EventElement, including | Reference attr 1
identification of AAS, Submodel,
SubmodelElements.

sourceSemanticld semanticld of the source EventElement, if | Reference attr 0.1
available

observableReference | Reference to the Referable, which defines the | Reference attr 1
scope of the event. Can be AAS, Submodel,
SubmodelElementCollection or

SubmodelElement.

observableSemanticld | semanticld of the Referable, which defines the | Reference attr 0.1
scope of the event, if available. See above.

topic Information for the outer message infrastructure | string attr 0.1
for scheduling the event to the respective
communication channel.

subject ABAC-Subject, who/ which initiated the creation | string attr 0.1
timestamp Timestamp in UTC, when this event was | string attr 1
triggered.

payload Event specific payload. Detailed in annex. string attr 0.1

tration Shell | 45

inis

The Metamodel of the Adm

4.6 Overview Metamodel of the Administration Shell

Figure 11 Overview Metamodel of the Asset Administration Shell

09¢19
J3| uohiuyaq

fyadoid
«[euIBIXa

suopduosaq 1daouo) [ews)x3y

[,0] adALjanaT :adAL|ans)
[1°0] ousia}ay :pianjea

[10] @dALE1IR@®NIERA :ON[EA
[L0l3sr1anfeA 3srjanjea

[1°0] Buwys JeWwIO4onieA
[10]1esbuLsg bue uopuyep
[1 01 09¢190319dA Eleq :odA elep
[170] Buws :joquiAs

[170] Buws :uonuysQa2IN0S
[1:0] ®ouaIRjRy :pjun

[1°0] Butas :pun

[10] 10 buiyg bue :awenpoys
1o5busbue :awenpausaid

09¢1903|uoneoy1dadgeleq
«aje|dway »

+ 4+ + o+

JusjuonuosealoedsEIRq

S)si| anfeA pue
sanfeA ‘sepadoid Joj ajejdway
uopeayidads eyep Aejdwax3

juswi|3|3powqng [}°0] @ouaigjay :planen +
«Qoensqe» [10] edALElR@enieA tenea +
ElEEIDY] JogadA eleq :adAenea +
9/qeliend adApeyenp (adA +
“““ IeqolB tousomor — — m“.“ﬁ%mmf oyiEny
; SojueWSSeH
uoljealyoadseleqseH] wesuon
\l\\\ 0
*0}9 SaJY ‘SU009]|09 ‘suopelado ..::o_ sousIgey jmj_m\, * Il
[10] edAejeqanien :enjea + 1adl
apnjou; sadAgns juswa|agns JaLo A odf
fuadoug, [+ j9(QadALeleq ‘odALoneA + wosng
Juswal3 |epowang Aejdwax3 Kuadoid adA1aynuap)
N Juswa|geleq «uojeIaWNUS»
A\
prpr +
A adA Jaypuapl :adALpl +
[epowigng 1ayRuap)|
djqeliend
d|qelusp|
SOIUBWIBS SEH
lpuryseH
uoljealyloadsereqseH
0 A
|
)
[10] ,lopowang :feusieyollg +
0] ,81qe18j8y JuBWSIPBUIBUOD + [1°0] ,lepowans :[epojyuoeIyjuSpesse + a0uB}su|
MO PUIYEOSSY (puy + | —— — = adAL
0] @ouBIa}eY JOBSEDS! -
[0 }9Y JOBseDs! + S jossy puiyjessy
fm———m— - = uondudssaqidasuo) SojuBWASSEH a[qelIuap] swnua»
uoneayad:
g S a/qeluep] uojjealyl0adseIRgSeH uolealyoadseleqseH
se pasn aq Aew uoljealy10adsereqseH +0 T
0
[,0]108lq018dsuolssiwiad Jos(qoiadsuolssiuuad +
0] ,lI8USUOIBASIUIPYIBSSY :WOI4PaALS ' T : o
b st m/.\._g amzo@mu_m__:.o@m H sanquyalgng :sanquivioalgngiebley +
feeuogoiqydaouoy O |IlPYSUOReASIUIWPYIOSSY - - 3IMYuOISSIULIdgSS3IOY
olqessjsy a/qeluap] djqesojey
uoljealy0adseleqseH SI9eLENO

// MaIAIB AO SSB|D

Jug Juswa|3 jepowqgns + [
uonoa|oDIuBWa I |epowans + =
Juawa|3diysuone|ay + W
=]
= ——— JUBWS|JBOUBIDDY + m
s|qeueAuoneiado + E fuadoid + [E
«podwi» =
saNnus JusWa|3 [apowgns uoneredo + B
o + [E
weng +
Amuz + pupnessy + [
Juswsa|Fereq + W << — — syuswsa|3 japowqns + [MIIA + W
=]
Aungedes + E «odwi» woawa(3jepowgns + [jepowqns +
qolg + W 1ai11end + W Jaynuspl + W
abuey + E enuuod + 5 JleySUOREISIUIWPYISSSY + (5]
AuadoigabenBueniniy + W Jurensuo) + W 1888V + W
jusnzoKEd + W Burjapoy sidaouo) oIseg
awa3diysuonejeypatelouy + = . :
weibeip
Sjuawa|3 |apowgns N “ ajesedas 995 Aundas
sluawa|3a|qeialey + [S «uodwr»
adA1Aaxi1e0 + [AN “ :
adA1Aey + [sodAL + [N -
EEK - ———————————— — 1 «podl
suawa3hay + [aodun Burouasayey + [N
adA Liaynuap| + 5 sadA [apowelsy uowwo) + [~ N
siuawa3a|qeynuap + 5 s|qeiejey + = AN
souatejey + = siqeyiend + &
ko + B siqeynuap) +
E]
Buiouaiasey — sonuewasseH + [.
pubuljapoiN + E «uodwi» puIYSEH + W s «podwi»
= vl PUREHY B
adA LAz + [< ————1 uoneaypadsereaseH + =
adA Lereganien + m UOIRULIOJUIBANRISIUIWPY + W
m sadA 1o1wo)y + E
= adA Lyted + [E (sayejdwa) suopeoyads ereq + [
uuss + [E = uowwod O
= jasbumsbhue + ‘ saueuonIq +
JELEN T m |
= pi+ E funoas + [
rewap + T = | 6 O
swiLaep + £ adk1qoig + [E | uIlapPON +
: = adALawIn + W ! s1daouo) oseg + [
81Aq + m = | «yodwi». <
= adk ke + Areuopoiqideouod + _ uowwod + [
uesjooq + [I H | =l
¥ m uondudsagidadsuo) + m (aAnewlou) 0'zA T 1Med - AISMA
sadALo1woly adA1ereq + W «Ho d wi» psy— ;
adA1abuey + W | _ - |
Az._omE_u ! ! |
| sadAL | «asn» |
; “ _ «podwi»
Y 1
I V
|
sadA Lowory + [! 09eT90318dA Lereqa + [Vi
adA 1 ajdwisAue + = < adALjanaT + [
adA LoiwoyvAue + Armnht_x srenpen + [E ’
== «podwi»
sadAL od sadA) pspuaixg + [adA Liregaouaiejeyenien + [El |l _ |
L sjdwis m << suondussaq 1deouo) Jojsuoneayads ereq + [
sadAy ajdwis + [1un(easAyduonesynadsereq + T 4 =
«poduwi» adA 1 Aue + W 09€T9DJ|UoNeIDadSEeIRq + W jusuoguonE: uwawﬂmo * m
- == uonesypadsereq + [=
_ Bumsbue| + W <= sadAL [apowela|y uowwod _ suondiiosag 1deduo) o) suoneayiosads eleq n T 7
saje|dwal) suoneoyoads ereq
sadAL papuaix3
saje|dwa | uoneoyoads eyeq

M31AIB AQ abe3oed Sse|d

46 | The Metamodel of the Administration Shell

Figure 12 Metamodel package overview

The Metamodel of the Administration Shell | 47

In this clause an overview of the main concepts of the AssetAdministration Shell metamodel is presented.

The main parts of an Asset Administration Shell (AAS) is the asset it is representing as well as the submodels. Optionally,
dictionaries and views may be part of the AAS. A dictionary contains concept descriptions used to describe the semantics
of submodels. For details see Clause 4.7.3. Views define a set of elements selected for a specific stakeholder. For details
see Clause 4.7.16.

An AAS represents exactly one asset. Asset types and asset instances are distinguished by setting the attribute “kind”.
For details see Clause 4.7.2.3.

Note: the UML modelling uses so-called abstract classes for denoting reused concepts like “HasSemantics”,
“Qualifiable” etc.

In case of an AAS of an instance asset, a reference to the AAS representing the corresponding asset type or another asset
instance is was derived from may be added (derivedFrom). The same holds for AAS of an asset type: also types can be
derived from other types.

An asset typically may be represented by several different identification properties like for example the serial number, its
RFID code etc. Such local identification properties are defined in the asset identification submodel
(assetldentificationModel). For details see Clause 4.7.4.

AASs, assets, submodels and concept descriptions need to be globally uniquely identifiable (Identifiable). Other elements
like for example properties, single local dictionaries just need to be referable within the model and thus only need a local
identifier (idShort from Referable). For details on identification see Clause 4.3. For details on Identifiable and Referable
see Clause 4.7.2.1.

Submodels consist of a set of submodel elements. Submodel elements may be qualified by a so-called Qualifier. For
details see Clause 4.7.5.

There are different subtypes of submodel elements like properties, operations, collections etc. For details see Clause 4.7.5.
A typical submodel element is shown in the overview figure: a property. A property is a data submodel element that has
a value of simple type like string, date etc. For details on properties see Clause 4.7.7.

Every submodel element needs a semantic definition (semanticld in HasSemantics). The submodel element might either
refer directly to a corresponding semantic definition provided by an external reference (e.g. to an eCl@ss or IEC CDD
property definition) or it may reference a submodel element of kind = Template that defines the semantics of submodel
elements of kind = Instance. For details see Clause 4.7.2.5.

The AAS itself can also define its own dictionary that contains semantic definitions of its submodel elements. These
semantic definitions are called concept descriptions (ConceptDescription). It is optional whether an AAS defines its own
concept dictionary (ConceptDictionary) or not. For details see Clause 4.7.20.

The concept dictionary may contain copies of property definitions of external standards. In this case a semantic definition
to the external standard shall be added (isCaseOf). isCaseOf is a more formal definition of sourceOfDefinition that is just
text.

Note: in this case most of the attributes are redundant because these are defined in the external standard. It is
about usability to add attributes for information like preferredName, unit etc. Consistency w.r.t. to the
referenced submodel element definitions should be ensured by corresponding tooling.

The concept dictionary may also contain proprietary definitions. In this case the provider of the AAS shall be aware that
no interoperability with other AAS can be ensured.

Data Specification Templates can be used (DataSpecification) to define which attributes (besides those predefined by the
metamodel) are used to define a submodel element or a concept description. For the concept description of properties
typically the Data Specification Template following IEC 61360 is used. For denoting recommended Data Specification
Templates to be used the <<template>>-dependency is used. For details see Clause 4.7.2.6.

Some Data Specification Templates like the template for IEC 61360 property definitions (DataSpecificationlEC61360)
are explicitly predefined and recommended to be used by the Plattform Industrie 4.0. For details see Clause 4.8.2. If
proprietary templates are used, again, interoperability with other AAS cannot be ensured.

48 | The Metamodel of the Administration Shell

Besides submodel elements including properties and concept descriptions also other identifiable elements may use
additional templates (HasDataSpecification). For details see Clause 4.7.2.7.

Submodel elements and the submodels themselves may have additional qualifiers (Qualifiable). Per Qualifiable there
might be more than one qualifier. For details see Clause 4.7.2.6.

Additionally, Views can be defined within an AAS. Views may consist of any elements that are referable
(containedElement). A “Safety View”, for example, contains all properties or operations that are safety relevant and need
special treatment. For details see Clause 4.7.16. A View definition can also be used in different life cycle stages. For
example, there could be a view for engineering and all referenced artefacts are deleted before delivering the AAS to the
customer.

For every AAS security aspects need to be considered (security). In this document the aspect of access control is covered
in more detail. So-called access permission rules are defined, that define which permission a specific authenticated subject
has on which object. For details see Clause 6.

Figure 12 gives a complete picture of all elements defined in the metamodel excluding security. Information on the
Security part is found in Clause 6.4.

4.7 Metamodel Specification Details: Designators

4.7.1 Introduction

In this clause the classes of the metamodel are specified in detail. In Annex B the template used to describe the classes
and relationships is explained. In Annex C some of the diagrams are shown together with all its inherited attributes to
give a complete overview.

For understanding the specifications, it is crucial to understand the common attributes first (Clause 4.7.2). They are reused
throughout the specifications of the other classes (“inherits from”) and define important concepts like identifiable,
qualifiable etc. They are abstract, i.e. there is no object instance of such classes.

4.7.2 Common Attributes

4.7.2.1 ldentifiables & Referables

Figure 13 Metamodel for Identifiables and Referables

class Common - Identifiable and Referable/

«abstract»
Referable

idShort: string

category: string [0..1]
description: LangStringSet [0..1]
parent: Referable* [0..1]

i

«abstracty
Identifiable

+ + 4+ +

+ administration: Administrative Information [0..1]
+ identification: ldentifier

The metamodel distinguishes between elements that are identifiable, referable or none of both. An identifiable element
as a globally unique identifier (Identifier). Referable elements can be referenced but for doing so the context of the element
is needed. A referable has a short unique identifier (idShort) that is unique just in its context, its name space. An
identifiable is also referable but there are elements that are not referable: they are just attributes of a referable. Identifiables
may have administrative information like version etc.

The Metamodel of the Administration Shell | 49

A name space is defined as follows in this context: The parent element an element is part of and that is either referable or
identifiable is the name space of the element. Examples: A submodel is the name space for the properties contained in it.
The name space of a submodel element being contained in a submodel element collection is the submodel element
collection. However, for identifiables the name space is not important since identifiables per definition have a global
identifier.

Class: Referable <<abstract>>

Explanation: An element that is referable by its idShort. This id is not globally unique. This id is unique within
the name space of the element.

Inherits from: --

Attribute Explanation
*=mandatory)

string

idShort* Identifying string of the element within its name
space.

Constraint AASd-001: In case of a referable element
not being an identifiable element this id is mandatory
and used for referring to the element in its name
space.

Constraint AASd-002: idShort shall only feature
letters, digits, underscore ("_"); starting mandatory
with a letter.

Constraint AASd-003: idShort shall be matched case-
insensitive.

Note: In case of an identifiable element idShort is
optional but recommended to be defined. It can be
used for unique reference in its name space and thus
allows better usability and a more performant
implementation. In this case it is similar to the
“BrowserPath” in OPC UA.

Note: In case the element is a property and the
property has a semantic definition (HasSemantics) the
idShort is typically identical to the short name in
English.

category The category is a value that gives further meta | string attr 0.1
information w.r.t. to the class of the element. It affects
the expected existence of attributes and the
applicability of constraints.

Note: The category is not identical to the semantic
definition (HasSemantics) of an element. The
category e.g. could denote that the element is a
measurement value whereas the semantic definition
of the element would denote that it is the measured
temperature.

description Description or comments on the element. LangStringSet | attr 0.1

The description can be provided in several languages.

parent Reference to the next referable parent element of the | Referable ref* 0.1
element.

50 | The Metamodel of the Administration Shell

Referable <<abstract>>

Constraint AASd-004: Add parent in case of non-
identifiable elements.

Note: This element is used to ease navigation in the
model and thus it enables more performant
implementation. In does not give any additional

information.
Class: Identifiable <<abstract>>
Explanation: An element that has a globally unique identifier.

Inherits from: Referable

Attribute Explanation
*=mandatory)

administration | Administrative information of an | Administrativelnformation

identifiable element.

Note: Some of the administrative
information like the version
number might need to be part of
the identification.

identification* | The globally unique identification | Identifier attr 1
of the element.

4.7.2.2 ldentifier

Figure 14 Metamodel for Identifier

class Common - Idemifier/

«enumeration»
. IdentifierType
Identifier
: : ———————-= Custom
+ idType: ldentifierType IRDI
+ id: Id RI

Information about identification can be found in Clause 4.4. In Clause 4.4.4 constraints and recommendation on when to
use which type of Identifier can be found.

Examples for Identifiers can be found in Clause 4.4.3 Identifiers for Assets and Administration Shells.

See Clause 4.4.4 for information which identifier types are supported.

Class: Identifier

Explanation: Used to uniquely identify an entity by using an identifier.

Inherits from: -

The Metamodel of the Administration Shell | 51

Class: Identifier

Attribute Explanation
(*=mandatory)

IdentifierType

IRDI etc. The supported Identifier
types are defined in the
enumeration “ldentifierType”.

id* Identifier of the element. Id attr 1
Its type is defined in idType.

Enumeration: IdentifierType

Explanation: Enumeration of different types of Identifiers for global identification

Literal Explanation

IRDI IRDI according to 1SO29002-5 as an ldentifier scheme for properties and
classifications.

IRI IRI according to Rfc 3987. Every URI is an IRI.

Custom Custom identifiers like GUIDs (globally unique identifiers)

4.7.2.3 Type or Instance of Model Elements (HasKind)

Figure 15 Metamodel for HasKind

class Common - HasKind/
«abstract» «enumeration»
HasKind ModelingKind
+ kind: ModelingKind [0..1] = Instance["~~~~~>] Template
Instance
Class: HasKind
Explanation: An element with a kind is an element that can either represent a template (type) or an

instance.

Default for an element is that it is representing an instance.

Inherits from: --

Attribute Explanation
(*=mandatory)

Kind of the element: either type or | ModelingKind
instance.

Default Value = Instance

The kind enumeration is used to denote whether an element is of kind Template or Instance.

52 | The Metamodel of the Administration Shell

Enumeration: ModelingKind

Explanation: Enumeration for denoting whether an element is a template or an instance.

Inherits from: --

Literal Explanation

Template

Software element which specifies the common attributes shared by all
instances of the template.

[SOURCE: IEC TR 62390:2005-01, 3.1.25] modified

Instance
Concrete, clearly identifiable component of a certain template.

Note: It becomes an individual entity of a template, for example a device
model, by defining specific property values.

Note: Inan object oriented view, an instance denotes an object of a template
(class).

[SOURCE: IEC 62890:2016, 3.1.16 65/617/CDV] modified

4.7.2.4 Administrative Information

Figure 16 Metamodel for Administrative Information

class Common - Administrative Information/

Referable
«abstrach Administrativelnformation
Identifiable -==>+ version: string [0..1]
+ administration: AdministrativeInformation [0..1] + _revision: string [0..1]

+ identification: Identifier

Every Identifiable may have administrative information. Administrative information includes for example

e Information about the version of the element

¢ Information about who created or who made the last change to the element

e Information about the languages available in case the element contains text, for translating purposed also the
master or default language may be defined

In the first version of the AAS metamodel only version information as defined by IEC 61360 is defined. In later versions
additional attributes may be added.

Version corresponds in principle to the version_identifier according to IEC 62832 but is not used for concept identifiers
only (IEC TS 62832-1) but for all identifiable elements. Version and revision together correspond to the version number
according to IEC 62832.

Administrativelnformation allows the usage of templates (HasDataSpecification) but there are no predefined templates
in this version of the metamodel.

Note: Some of the administrative information like the version number might need to be part of the identification.

Class: Administrativelnformation

Explanation: Administrative metainformation for an element like version information.

The Metamodel of the Administration Shell | 53

Class: Administrativelnformation

Inherits from: HasDataSpecification

Attribute Explanation

(*=mandatory)

version Version of the element. string attr 0.1
revision Revision of the element. string attr 0.1

Constraint AASd-005: A revision
requires a version. This means, if
there is no version there is no
revision neither.

4.7.2.5 Semantic References (HasSemantics)

Figure 17 Metamodel for Semantic References (HasSemantics)

class Common - HasSemantics /

«abstract»
HasSemantics

+ semanticld: Reference [0..1]

Class: HasSemantics <<abstract>>

Explanation: Element that can have a semantic definition.

Inherits from: --

Attribute Explanation Kind Card.

(*=mandatory)

semanticld Identifier of the semantic | Reference
definition of the element. It is
called semantic id of the element.

The semantic id may either
reference an external global id or
it may reference a referable model
element of kind=Template that
defines the semantics of the
element.

Note: In many cases the idShort is
identical to the English short name
within the semantic definition as
referenced via its semantic id.

54 | The Metamodel of the Administration Shell

4.7.2.6 Qualifiables and Formulas - Constraints

Figure 18 Metamodel Qualifiables, Formulas and Constraints

class Common - Qualifiable/

«ab strach «abstracty
Qualifiable (=~~~ =~~=> Constraint
+ qualifier: Constraint [0..]
HasSemantics Formula

Qualifier + dependsOn: Reference* [0..*]

type: QualifierType
valueType: DataTypeDef
value: ValueDataType [0..1]
valueld: Reference [0..1]

+ + + +

For qualifiable elements additional qualifiers may be defined. For details on qualifiers and for predefined standardized
qualifier types see IEC 62569-1. For example, a level qualifier defining the level type minimal value, maximum value,
typical value and nominal value can be found in IEC 62569-1. Additional qualifier types are planned to be defined in the
ongoing work of DIN SPEC 92000 like for example expressions semantics and expression logic.

If there are no predefined qualifier types or the additional qualification is quite complex then instead of a set of qualifiers
also a formula can be defined.

In Figure 19 an example for a formula depending on the property “Status” is shown. Up to now no formula language is
defined for the AAS.

Figure 19 Example Formula “Machine Status not Running”

<aas:Formula>
<aas:dependsOn>
<Keys> <Key local="True" type="AssetAdministrationShell” idType="IRI">http://myShell</Key>
<Key local="True" type="Submodel”idType="IdShort">Maschine</Key>
<Key local="True"type="Property”idType="IdShort">Status</Key>
</aas:dependsOn> |=RUNNING

</aas:Formula>

Class: Qualifiable <<abstract>>

Explanation: The value of a qualifiable element may be further qualified by one or more qualifiers or
complex formulas.

Inherits from: --

Attribute Explanation
*=mandatory)

of a | Constraint

Additional qualification
qualifiable element.

qualifier

The Metamodel of the Administration Shell | 55

Class:

Constraint <<abstract>>

Explanation:

A constraint is used to further qualify an element.

Inherits from:

Attribute
(*=mandatory)

Explanation

Class:

Qualifier

Explanation:

A qualifier is a type-value-pair that makes additional statements w.r.t. the value of the

element.

Inherits from:

Attribute

(*=mandatory)

type*

Constraint; HasSemantics

Explanation

The qualifier type describes the
type of the qualifier that is applied
to the element.

QualifierType

attr

valueType*

Data type of the qualifier value.

DataTypeDef

attr

value

The qualifier value is the value of
the qualifier.

Constraint AASd-006: if both, the
value and the valueld are present
then the value needs to be identical
to the value of the referenced
coded value in Qualifier/valueld.

ValueDataType

attr

valueld

Reference to the global ungiue id
of a coded value.

Reference

attr

0.1

Class:

Formula

Explanation:

A formula is used to describe constraints by a logical expression.

Inherits from:

Attribute
(*=mandatory)

dependsOn

Constraint

Explanation

A formula may depend on
referable or even external global
elements that are used in the
logical expression.

The value of the referenced
elements needs to be accessible so
that it can be evaluated in the
formula to true or false in the
corresponding logical expression
itisused in.

Reference

aggr

56 | The Metamodel of the Administration Shell

4.7.2.7 Used Templates for Data Specification (HasDataSpecification)

Figure 20 Metamodel HasDataSpecification

class Common - HasDataSpecification/

HasDataSpecification

+ dataSpecification: Reference [0..]

Figure 21 Metamodel for HasDataSpecification

Class: HasDataSpecification

Explanation: Element that can be extended by using data specification templates. A data
specification template defines the additional attributes an element may or shall
have. The data specifications used are explicitly specified with their global id.

Inherits from: --

Attribute (*=mandatory) Explanation

dataSpecification Global reference to the data | Reference
specification template used
by the element.

4.7.3 Asset Administration Shell Attributes

Figure 22 Metamodel AssetAdministrationShell

class Asset Administration Shell /

HasDataSpecification
o [
‘ Security ‘ Identifiable| |
- - - - AssetAdministrationShell 2
+ accessControlPolicyPoints: AccessControlPolicyPoints - -
+ certificate: Certificate [0..*] <---+ security: Security [0..1] Referable
+ requiredCertificateExtension: Reference [0..*] + derivedFrom: AssetAdministrationShell* [0..1] ConceptDictionary
0.*
i
HasDataSpecification 0%
Identifiable HasDataSpecification
Asset HasSemantics
+ kind: AssetKind Referable
+ assetldentificationModel: Submodel* [0..1] View
+_bilOMaterial: Submodet” [0..1] : + containedElement. Referable* [0..*]
!
1
\‘/ 0.
HasDataSpecification
HasKind|
HasSemantics
Identifiable
Qualifiable
Submodel

An Administration Shell is uniquely identifiable since it inherits from Identifiable.

The derivedFrom attribute is used to establish a relationship between two AssetAdministration Shells that are derived
from each other. For more detailed information on the derivedFrom concept see Clause 4.2 Types and Instances.

The Metamodel of the Administration Shell | 57

Class: AssetAdministrationShell

Explanation: An AssetAdministration Shell.

Inherits from: HasDataSpecification,; Identifiable

Attribute Explanation

(*=mandatory)

derivedFrom The reference to the AAS the | AssetAdministrationShell ref* 0.1
AAS was derived from.

security Definition of the security | Security agar 0.1
relevant aspects of the AAS.

asset* The asset the AAS is | Asset ref* 1
representing.

submodel The asset of an AAS is | Submodel ref* 0.*
typically described by one or
more submodels.

Temporarily no submodel
might be assigned to the
AAS.

conceptDictionary | An AAS max have one or | ConceptDictionary aggr 0.*
more concept dictionaries
assigned to it. The concept
dictionaries typically contain
only descriptions for
elements that are also used
within the AAS (via
HasSemantics).

view If needed stakeholder specific | View aggr 0.*
views can be defined on the
elements of the AAS.

4.7.4 Asset Attributes

Figure 23 Metamodel of Asset

class Asset /
HasDataSpecification
Identifiable
Asset
* kind: AssgtKinq = HasDataSpecification
+ assetldentificaionModel: Submodel* [0..1] HasKind
+ billOfMaterial: Submodel* [0..1] HasSemantics
E Identifiable
V Qualifiable
«enumeration» Submodel
AssetKind
Type
Instance

58 | The Metamodel of the Administration Shell

Class: Asset

Explanation: An Asset describes meta data of an asset that is represented by an AAS.
The asset may either represent an asset type or an asset instance.

The asset has a globally unique identifier plus — if needed — additional domain
specific (proprietary) identifiers.

Inherits from: HasDataSpecification; Identifiable

Attribute (*=mandatory) | Explanation

kind* Denotes whether the Asset of of kind “Type” | AssetKind

or “Instance”.

assetldentificationModel | A reference to a Submodel that defines the | Submodel ref* 0.1
handling of additional domain specific
(proprietary) Identifiers for the asset like e.g.
serial number etc.

billOfMaterial Bill of material of the asaset represented by a | Submodel ref* 0.1
submodel of the same AAS. This submodel
contains a set of entities describing the
material used to compose the composite 14.0
Component.

Enumeration: AssetKind

Explanation: Enumeration for denoting whether an element is a type or an instance.

Inherits from: --

[nelel Explanation

Type
hardware or software element which specifies the common attributes
shared by all instances of the type
[SOURCE: IEC TR 62390:2005-01, 3.1.25]

Instance

concrete, clearly identifiable component of a certain type
Note: It becomes an individual entity of a type, for example a device, by
defining specific property values.

Note: Inan object oriented view, an instance denotes an object of a class (of
a type).

[SOURCE: IEC 62890:2016, 3.1.16] 65/617/CDV

For more information on types and instances see Clause 4.2.

The Metamodel of the Administration Shell | 59

4.7.5 Submodel and Submodel Element Attributes

Figure 24 Metamodel for Submodel

class Models as Templates or Instances /

«abstract»
HasKind

+ kind: ModelingKind [0..1] = Instance

HasDataSpecification HasDataSp ec:ﬁcat{on
) HasSemantics
HasSemantics .
. Qualifiable
Identifiable o Referable
Qualifiable 0.*
Submodel «abstract»
SubmodelElement
Class: Submodel
Explanation: A submodel defines a specific aspect of the asset represented by the AAS.

A submodel is used to structure the digital representation and technical functionality of an
Administration Shell into distinguishable parts. Each submodel refers to a well-defined
domain or subject matter. Submodels can become standardized and thus become submodels
types. Submodels can have different life-cycles.

Inherits from: HasDataSpecification; HasSemantics; Identifiable; Qualifiable; HasKind

Attribute Explanation
(*=mandatory)

A submodel consists of zero or | SubmodelElement

more submodel elements.

submodelElement

A submodel instance can reference the submodel template it was derived from. Formulated in a technical way: semanticld
of a Submodel with kind=Instance may refer to a Submodel of kind=Template (kind inherited via HasKind).

A submodel can be qualified (Qualifiable).
Submodel element are qualifiable elements, i.e. one or more qualifier may be defined for each of them.

Submodels and submodel elements may also have data specification templates defined for them. A template might for
example be defined to mirror some of the attributes like preferredName and unit of a property definition if the AAS does
not contain a corresponding concept description. Otherwise there only is the property definition referenced by semanticld
available for the property: the lookup of the attributes has to be realized online in a different way and is not available
offline.

In case the submodel is of kind=Template then the submodel elements within the submodel are presenting submodel

element types. In case the submodel is of kind=Instance then its submodel elements represent submodel element
instances.

60 | The Metamodel of the Administration Shell

Class:

SubmodelElement <<abstract>>

Explanation:

A submodel element is an element suitable for the description and differentiation of assets.

NOTE:

The concept of type and instance applies to submodel elements. Properties are special
submodel elements.

The property types are defined in dictionaries (like the IEC Common Data Dictionary
or eCl@ss), they do not have a value. The property type (kind=Template is also
called data element type in some standards.

The property instances (kind=Instance) typically have a value. A property instance is
also called property-value pair in certain standards.

Inherits from:

Attribute

(*=mandatory)

HasDataSpecification; Referable; Qualifiable; HasSemantics; HasKind

Explanation

tration Shell | 61

inis

The Metamodel of the Adm

Figure 25 Metamodel Overview for Submodel Element Subtypes

+3]qrIaJaY PAAIBSQO

+

RUELERIEEE]

JUEYE]
«oensge»

[T0] siassy nesse
adA LAnu3 :adk LAnus
[+0] uawa|3epoWans Juawales

+
+
+

Ainuz

vV

uBWa[3|apowans anfeA +

siqeeAuoneIado 7

N

\
\

aspe) = [

‘0] ueajooq sareardnamole +
as(ey = [10] UBBI0OQ paIBpIO +
[0l UaWa|3|apowans :anea +

uonoaliooaWa3IepOwAnS 7

[0l a|qeueAUonEIado :3|qRURAINdINOU!
["0] siqeueAUONEIadO [9jqeURAINdINO
[0l alqeueAuonesado :ajqeueaindul

+
+
+

uonesado

v v

ad Lowi :adA Lawiw

[1"0] 2dA1qoig :anjen

+
+

qoig

dA Lawin sedh Lowiw +
[10] @dA Lured :anjen +

a4

[10] 8ouaIajey ‘@njen +

swaIFecuIeeY 7

fujiqedes

[10] adfLereqanien ixew +
[1°0] adf ereqanienuw +
Jogedk eeq adanien +

TT™0I 9oUaI3]5Y PIaNfen +

[1"0] 9dA Leye@anieA anjen +

jaqadA Lereq :adALanjen +

abuey 7 7

fuadoid

[10] souaIajey :planjen
[1"0] 195BUMSHURT :anfRA

+
¥

7 fadoigabenbuenini

[+0] Auawa|Jeleq :uonelouue +

wswa[3diysuone aypaielouuy

wswa|gereq
«oensqe»

43]qeIaJoY PUCITS +
La1qeIajeY Bl +

wawsai3diysuoneiey

s|qesajey
a1qeyiend
sonuewasseH
puryiseH
uonesynadseregseq

uswa3apowans

«oexsqe»

\mmn;_n_;m uBWa|3 |apowgns sse|d

62 | The Metamodel of the Administration Shell

4.7.6 Overview of Submodel Element Types

Submodel elements include data properties as well as operations, events and other elements needed to describe a model
for an asset (see Figure 25).

4.7.7 Data Element Attributes

Figure 26 Metamodel for Data Elements

class Data Element Subtypes /
SubmodelElement
«abstract»
DataElement
Zf A A A
Property
+ valueType: DataTypeDef Range
+ value: ValueDataType [0..1] + valueType: DataTypeDef ReferenceElement
+ valueld: Reference [0..1] + min: ValueDataType -
) + value: Reference [0..1]
+ max: ValueDataType
MultiLanguageProperty File Blob
+ value: LangStringSet [0..1] + value: PathType [0..1] + value: BlobType [0..1]
+ valueld: Reference [0..1] + mimeType: MimeType + mimeType: MimeType

A data element is a submodel element that is not further composed out of other submodel elements.
A data element is a submodel element that has a value or a predefined number of values like range data elements.
A controlled value is a value whose meaning is given in an external source (see “ISO/TS 29002-10:2009(E)”).

The type of value differs for different subtypes of data elements. Data Elements include properties and file handling and
reference elements, see Figure 25.

The following categories are defined for data elements except for files and blobs:

Category: Applicable to: Explanation:

A constant property is a property with a value that does not change
Property property property g

CONSTANT over time.

MultiL P S
ultiLanguageProperty In eCl@ss this kind of category has the category “Coded Value”.

Propert A parameter property is a property that is once set and then typically
PARAMETER perty does not change over time.

MultiLan Proper . . .
ultiLanguageProperty This is for example the case for configuration parameters.

VARIABLE Property A variable property is a property that is calculated during runtime, i.e.
MultiLanguageProperty its value is a runtime value.
Class: DataElement <<abstract>>
Explanation: A data element is a submodel element that is not further composed out of other submodel
elements.

A data element is a submodel element that has a value. The type of value differs for different
subtypes of data elements.

Inherits from: SubmodelElement

The Metamodel of the Administration Shell | 63

Class: DataElement <<abstract>>

Attribute Explanation
(*=mandatory)

4.7.8 Property Attributes

Figure 27 Metamodel for Property

class Submodel Element - Property/

DataElement
Property

+ valueType: DataTypeDef
+ value: ValueDataType [0..1]
+ valueld: Reference [0..1]

Class: Property

Explanation: A property is a data element that has a single value.

Inherits from: DataElement

Attribute Explanation
*=mandatory)
valueType* Data type of the value DataTypeDef attr 1
value The value of the property instance. ValueDataType attr 0.1
valueld Reference to the global ungiue id of a | Reference attr 0.1
coded value.

Constraint AASd-007: if both, the
value and the valueld are present then
the value needs to be identical to the
value of the referenced coded value
in valueld.

4.7.9 Multi Language Property Attributes

Figure 28 Metamodel for MultiLanguageProperty

class Submodel Element - MultiLanguageProperty/

DataElement
MultiLanguageProperty

+ value: LangStringSet [0..1]
+ valueld: Reference [0..1]

Class: MultiLanguageProperty

Explanation: A property is a data element that has a multi language value.

64 | The Metamodel of the Administration Shell

Class: MultiLanguageProperty

Inherits from: DataElement

Attribute Explanation

(*=mandatory)

value The value of the property instance. LangStringSet attr 0.1

valueld Reference to the global ungiue id of a | Reference attr 0.1
coded value.

Constraint AASd-012: if both, the
value and the valueld are present then
for each string in a specific language
the meaning must be the same as
specified in valueld.

4.7.10 Reference Element Attributes

Figure 29 Metamodel for ReferenceElement

class Submodel Element - Referen... /

DataElement
ReferenceElement

+ value: Reference [0..1]

Class: ReferenceElement

Explanation: A reference element is a data element that defines a logical reference to another element
within the same or another AAS or a reference to an external object or entity.

Inherits from: DataElement

Attribute Explanation
(*=mandatory)

Reference to any other referable | Reference
element of the same of any other
AAS or a reference to an external

object or entity.

For more information on references see Clause 4.7.21.

The Metamodel of the Administration Shell | 65

4.7.11 Range Attributes

Figure 30 Metamodel for Range

class Submodel Element - Range/

DataElement
Range

+ valueType: DataTypeDef
+ min: ValueDataType [0..1]
+ max: ValueDataType [0..1]

Class: Range

Explanation: A range data element is a data element that defines a range with min and max.

Inherits from: DataElement

Attribute Explanation
(*=mandatory)

valueType* Datat type of the min und max DataTypeDef

min The minimum value of the range. | ValueDataType | attr 0.1

If the min value is missing then the
value is assumed to be negative
infinite.

Constraint AASd-013: In case of a
range with kind=Instance either the
min or the max value or both need
to be defined.

max The maximum value of the range. | ValueDataType | attr 0.1

If the max value is missing then the
value is assumed to be positive
infinite.

If the semanticld is a reference to a concept description then it is a concept description with data specification IEC61360.
The value for levelType is the set {Min, Max}.

66 | The Metamodel of the Administration Shell

4.7.12 Blob and File Attributes

Figure 31 Metamodel for Blob and File

A media type (also MIME type and content type) [...] is a two-part Identifier for file formats and format contents
transmitted on the Internet. The Internet Assigned Numbers Authority (IANA) is the official authority for the
standardization and publication of these classifications. Media types were originally defined in Request for Comments
2045 in November 1996 as a part of MIME (Multipurpose Internet Mail Extensions) specification, for denoting type of

class File and Blob Data Element /

«abstract»

DataElement

SubmodelElement|

Blob

File

+ value: BlobType [0..1]
+ mimeType: MimeType

+ value: PathType [0..1]
+ mimeType: MimeType

email message content and attachments; [...] hence the name /MIME type.®

Class:

Blob

Explanation:

A BLOB is a data element that represents a file that is contained with its source code in the

value attribute.

Inherits from:

Attribute

(*=mandatory)

value

DataElement

Explanation

The value of the BLOB instance of
a blob data element.

Note: In contrast to the file
property the file content is stored
directly as value in the Blob data
element.

BlobType

attr

0.1

mimeType*

Mime type of the content of the
BLOB.

The mime type states which file
extension the file has.

Valid values are e.g.
“application/json”,

ERINEE)

“application/xls”, “image/jpg”

The allowed values are defined as
in RFC2046.

MimeType

attr

® Wikipedia.org, date: 2018-04-09

The Metamodel of the Administration Shell | 67

Class: File

Explanation: A File is a data element that represents an address to a file. The value is an URI that can
represent an absolute or relative path.

Inherits from: SubmodelElement

Attribute Explanation
*=mandatory)

Path and name of the referenced
file (with file extension).

PathType

The path can be absolute or
relative.

mimeType* Mime type of the content of the | MimeType attr 1
file.

For handling of supplementary external files in exchanging AAS specification in aasx format see also Clause 7.4
Conventions for the Asset Administration Shell package file format (AASX). An absolute path is used in the case that the
file exists independently of the AAS. A relative path, relative to the package root should be used if the file is part of the
serialized package of the AAS.

4.7.13 Submodel Element Collection Attributes

Figure 32 Metamodel for Submodel Element Collections

class Submodel Element Collections/
HasDataSpecification «abstracty
HasKind|___ . .] Constraint
HasSemantics
Qualifiable
Referable
«abstract»
SubmodelElement HasSemantics
ualifier
A Q
! + type: QualifierType
! + valueType: DataTypeDef
+ value: ValueDataType [0..1]
SubmodelElementCollection + valueld: Reference [0..1]
+ value: SubmodelElement [0..*]
+ ordered: boolean [0..1] = false
+ allowDuplicates: boolean [0..1] = false

Class: SubmodelElementCollection

Explanation: A submodel element collection is a set or list of submodel elements.

Inherits from: SubmodelElement

Attribute Explanation
(*=mandatory)

Submodel element contained in the | SubmodelElement

collection.

68 | The Metamodel of the Administration Shell

Class: SubmodelElementCollection

ordered If ordered=false then the elements | boolean attr 0.1
in the property collection are not
ordered. If ordered=true then the
elements in the collection are
ordered.

Default = false

Note: An ordered submodel
element collection is typically
implemented as an indexed array.

allowDuplicates | If allowDuplicates=true then it is | boolean attr 0.1
allowed that the collection contains
the same element several times.

Default = false

4.7.14 Relationship and Annotated Relationship Attributes

Figure 33 Metamodel for Relationship and Annotated Relationhip Elements

class Submodel Element - RelationshipEIement/

SubmodelElement
RelationshipElement

+ first: Referable*
+ second: Referable*

I

AnnotatedRelationshipElement

+ annotation: DataElement* [0.."]

Class: RelationshipElement

Explanation: A relationship element is used to define a relationship between two referable elements.

Inherits from: SubmodelElement

Attribute Explanation

(*=mandatory)

first* First element in the relationship | Referable ref* 1
taking the role of the subject.

second* Second element in the relationship | Referable ref* 1
taking the role of the object.

The Metamodel of the Administration Shell | 69

Class: AnnotatedRelationshipElement

Explanation: An annotated relationship element is a relationship element that can be annotated with
additional data elements.

Inherits from: RelationshipElement

Attribute Explanation
*=mandatory)

annotation Annotations that hold for the | DataElement
relationships between the two
elements.

4.7.15 Operation Attributes

Figure 34 Metamodel of Operations

class Submodel Element - Operation /

SubmodelElement
Operation
+ inputvariable: OperationVariable [0."] |_____ -] OperationVariable
+ outputVariable: OperationVariable [0..] .
+ inoutputVariable: OperationVariable [0..*] +_value: SubmodelElement

Class: Operation

Explanation: An operation is a submodel element with input and output variables.

Inherits from: SubmodelElement

Attribute Explanation
(*=mandatory)

inputVariable Input parameter of the operation. OperationVariable
outputVariable Output parameter of the operation. | OperationVariable | aggr 0.*
inoutputVariable | Parameter that is input and output | OperationVariable | aggr 0.*

of the operation.

Class: OperationVariable

Explanation: An operation variable is a submodel element that is used as input or output variable of an
operation.

Inherits from:

Attribute Explanation
*=mandatory)

SubmodelElement

Describes the needed argument for an
operation via a submodel element of
kind=Template.

70 | The Metamodel of the Administration Shell

OperationVariable

Constraint AASd-008: The submodel
element value of an operation variable
shall be of kind=Template.

Note: Operations typically specify the behavior of a component in terms of procedures. Hence, operations enable
the specification of services with procedure-based interactions [32].

4.7.16 Capability Attributes

Figure 35 Metamodel for Capabilities

class Submodel Element - Ca... /
SubmodelElement
Capability
Class: Capability
Explanation: A capability is the implementation-independent description of the potential of an asset to

achieve a certain effect in the physical or virtual world.

- SubmodelElement

Attribute Explanation

(*=mandatory)

Note: The semanticld of a capability is typically an ontology. Thus reasoning on capabilities is enabled.

For information and examples how to apply the concept of capability and how to map it to one or more skills implementing
the capability please refer to [36]. The mapping is done via a relationship element with the corresponding semantics. A
skill is typically a property or an operation. In more complex cases the mapping can also be a collection or a complete
submaodel.

The Metamodel of the Administration Shell | 71

4.7.17 Entity Attributes

Figure 36 Metamodel of Entities

class Submodel Element - Entity/
HasDataSpecification
HasKind
HasSemantics {asset must be defined i)
Qualifiable case entityType =
Referable SelfManagementAsset.
«abstract For Co-managed assets no
SubmodelElement asset atfribute can be
| defined.}
Entity «enumeration»
EntityType
+ statement: SubmodelElement [0.."] - - —--=
+ entityType: EntityType CoManagedEntity
+ asset Asset* [0..1] SelfManagedEntity
Class: Entity
Explanation: An entity is a submodel element that is used to model entities.

Inherits from: SubmodelElement

Attribute Explanation

(*=mandatory)

statement Describes statements applicable to the | SubmodelElement aggr 0.*
entity by a set of submodel elements,
typically with a qualified value.

entityType* Describes whether the entity is a co- | EntityTypeEnum attr 1
managed entity or a self-managed
entity.

asset Reference to the asset the entity is | Asset ref* 0.1

representing.

Constraint AASd-014: The asset
attribute must be set if entity Type is set
to “SelfManagedEntity”. It is empty
otherwise.

Enumeration: EntityTypeEnum

Explanation: Enumeration for denoting whether an entity is a self-managed entity or a co-
managed entity.

Inherits from: --

Literal Explanation

72 | The Metamodel of the Administration Shell

Enumeration: EntityTypeEnum

Explanation: Enumeration for denoting whether an entity is a self-managed entity or a co-
managed entity.

For co-managed entities there is no separate AAS. Co-managed entities need
to be part of a self-managed entity.

CoManagedEntity

SelfManagedEntity Self-Managed Entities have their own AAS but can be part of the bill of
material of a composite self-managed entity.

The asset of an 14.0 Component is a self-managed entity per definition.

4.7.18 Event Attributes

Figure 37 Metamodel for Event and MetaEvent

class Submodel Element - Event/

SubmodelElement

«abstract»
Event

BasicEvent

+ observed: Referable*

Class: Event <<abstract>>

Explanation: A event

Inherits from: SubmodelElement

Attribute Explanation
*=mandatory)

Class: BasicEvent

Explanation: A basic event

Inherits from: Event

Attribute Explanation
(*=mandatory)

Reference to the data or other | Referable

elements that are being observed.

observed*

The Metamodel of the Administration Shell | 73

4.7.19 View Attributes

Figure 38 Metamodel of Views

class Views /
HasDataSpecification HasDataSpecification
Identifiable HasSemantics
AssetAdministrationShell g ol Referable
+ security: Security [0..1] View
+ derivedFrom: AssetAdministrationShell* [0..1] + containedElement: Referable™ [0..]

The large number of submodel elements within a submodel can be filtered by views, so that different user groups can
only see relevant elements.

Note: Views are a projection of submodel elements for a given perspective. They are not equivalent to submodels.

Class: View

Explanation: A view is a collection of referable elements w.r.t. to a specific viewpoint of one or more
stakeholders.

Inherits from: HasDataSpecification; Referable; HasSemantics

Attribute Explanation
(*=mandatory)

Referable

Referable elements that are

contained in the view.

containedElement

4.7.20 Concept Dictionary and Concept Description Attributes

Figure 39 Metamodel of Concept Dictionary and Concept Descriptions

class ConceptDictionary/

Referable
ConceptDictionary

0.*

HasDataSpecification
Identifiable

ConceptDescription

+ isCaseOf. Reference [0..]

Class: ConceptDictionary

Explanation: A dictionary contains elements that can be reused.
The concept dictionary contains concept descriptions.

Typically a concept description dictionary of an AAS contains only concept descriptions of
elements used within submodels of the AAS.

Inherits from: Referable

74 | The Metamodel of the Administration Shell

Class: ConceptDictionary

Attribute Explanation
(*=mandatory)

conceptDescription | Concept description defines a | ConceptDescription

concept.
Class: ConceptDescription
Explanation: The semantics of a property or other elements that may have a semantic description is

defined by a concept description.

The description of the concept should follow a standardized schema (realized as data
specification template).

Inherits from: HasDataSpecification; Identifiable;

Attribute Explanation

(*=mandatory)

isCaseOf Global reference to an external | Reference aggr 0.*
definition the concept s
compatible to or was derived from.

Note: Compare to is-case-of
relationship in ISO 13584-32 &
IEC EN 61360

Different types of submodel elements require different attributes for describing the semantics of them. This is why a
concept description has at least one data specification template associated with it. Within this template the attributes
needed to define the semantics are defined.

See Clause 4.8 for predefined data specification templates to be used.

The Metamodel of the Administration Shell | 75

4.7.21 Referencing in Asset Administration Shells

Figure 40 Metamodel for References and Keys

class Common - Reference and Keys /

«enumeration»

Key

_________________ type: KeyElements Reference

local: boolean

KeyElements

GlobalReference

L 1..*«ordered»
FragmentReference |

value: string
idType: KeyType

+ + + +

J;

i
«enumeration» {if type == GlobalReference th%1 i -
ReferableElements idType <> LocalKeyType I {ifidType ==
If | LocalKeyType
|
|

AccessPermissionRule
AnnotatedRelationshipElement
BasicEvent |
Blob V
Capability «enumeration»
ConceptDictionary KeyType
DataElement . «enumerat...
File . LocalKeyType
Enly — ldshort
Event *
MultiLanguageProperty
Operation

Property «enumeration»
Range IdentifierType

ReferenceElement o Custom
RelationshipElement IRDI

IRI

type==AssetAdministrationShell then local == true}
then idType <> LocalKeyType} '

Fragmentld

SubmodelElement
SubmodelElementCollection

View

«enumeration»
IdentifiableElements

Asset
AssetAdministrationShell
ConceptDescription
Submodel

Note: References are used throughout the metamodel although not directly visible.

If an element is not a part of an element but just references it, this is denoted by an * behind the Type.

E.g. asset: Asset* means that asset: Reference with Key.type=Asset for the last Key in the Reference

Class: Reference

Explanation: Reference to either a model element of the same or another AAs or to an external entity.

A reference is an ordered list of keys, each key referencing an element. The complete list of
keys may for example be concatenated to a path that then gives unique access to an element
or entity.

Inherits from: -

76 | The Metamodel of the Administration Shell

Class:

Attribute
(*=mandatory)

key*

Reference

Explanation

Unique reference in its name

space.

Class:

Key

Explanation:

A key is a reference to an element by its id.

Inherits from:

Attribute
*=mandatory)

type*

Explanation

Denote which kind of entity is
referenced.

In case type = GlobalReference
then the element is a global unique
id.

In all other cases the key references
a model element of the same or of
another AAS. The name of the
model element is explicitly listed.

KeyElements

local*

Denotes if the key references a
model element of the same AAS
(=true) or not (=false). In case of
local = false the key may reference
a model element of another AAS or
an entity outside any AAS that has
a global unique id.

boolean

attr

value*

The key value, for example an
IRDI if the idType=IRDI.

string

attr

idType*

Type of the key value.

In case of idType = idShort local
shall be true.

In case type=GlobalReference
idType shall not be IdShort.

KeyType

attr

Enumeration:

Explanation:
Set of:

Literal

KeyElements

Enumeration of different key value types within a key.

ReferableElements

Explanation

GlobalReference reference to an element not belonging to an asset administration shell

FragmentReference unique reference to an element within a file. The file itself is assumed to be

part of an asset administration shell.

The Metamodel of the Administration Shell | 77

Enumeration: ReferableElements

Explanation: Enumeration of all referable elements within an asset administration shell

Set of: IdentifiableElements

Literal Explanation

AccessPermissionRule Access Permission Rule

AnnotatedRelationshipElement | Annotated relationship element

BasicEvent Basic Event

Blob Blob

Capability Capability
ConceptDictionary Concept Dictionary
DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the
reference may be a Property, a File etc.

Entity Entity

Event Event
Note: Event is abstract

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages
Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel Element

Note: Submodel Element is abstract, i.e. if a key uses “SubmodelElement”’
the reference may be a Property, a SubmodelElementCollection, an
Operation etc.

SubmodelElementCollection Collection of Submodel Elements

View View

Enumeration: IdentifiableElements

Explanation: Enumeration of all identifiable elements within an asset administration shell
that are not identifiable

Set of: --

Literal Explanation

Asset Asset
AssetAdministrationShell Asset Administration Shell
ConceptDescription Concept Description
Submodel Submodel

78 | The Metamodel of the Administration Shell

Enumeration: KeyType

Explanation: Enumeration of different key value types within a key.

Set of: LocalKeyType, IdentifierType

Literal Explanation

Enumeration: LocalKeyType

Explanation: Enumeration of different key value types within a key.

Literal ‘ Explanation

IdShort idShort of a referable element

Fragementld Identifier of a fragment within a file

IdentifierType is defined in Clause 4.7.2.2.
4.7.22 Data Types

4.7.22.1 Predefined Basic Data Types

The predefined types used to define the metamodel use the names and the semantics of XML Schema Definition (XSD).
Additionally the type “langString” with the semantics as defined in the Resource Description Framework (RDF)™ is used.
“langString” is a string value tagged with a language code.

These types are also used to denote the type of a value and is defined in the type anySimpleTypeDef (see Clause 4.7.22.2).

10 see: https://www.w3.org/XML/Schema

11 see: https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/XML/Schema
https://www.w3.org/TR/rdf11-concepts/

The Metamodel of the Administration Shell | 79

Figure 41 Built-In Types of XML Schema Definition 1.1 (XSD)

Key
all complex types | anySimple Special .
| anyURIt | Primitive types
Rhtonictyee [aterinestany [EARSEEREE
TEI g - a-
- | ENTITIES | Built-in list types

— baseé4Binary

I all complex types | Complex types

|
|
—| boolean |
|
|

| aaes | E | T2 is derived from T1
—| dateTime T2 I

L[dateTimeStamp |

—| hexBinary —{ nonPositiveInteger |

— NOTATION L{ negativeInteger l

— decimal |
| —_— |
— double | — long |
| Guration | Lo |
dayTimeDuraticn | short |
yearMonthDuration | byte |
— float | — nonNegativeInteger |
— gDay | positiveInteger |
— gMonth | unsignedLong |
— gMonthDay | unsignedint |
— gYear | I—| unsignedsShort |
— gYearMonth | unsignedByte |
|
|
|
|

—_OName
— string
| { normalizedString |
L. | I—{ token |
— ENTITIES | — language |
—{ IDREFS | | Name |
| NMTORENS | NCName |
ENTITY |
ID |
IDREF |
— MMTOREN

4.7.22.2 Data Types
Types that are used for specific data specification templates are listed in the corresponding clause of the data specification.
The meaning and format of xsd types is specified in https://www.w3.org/XML/Schema.

Table 5 lists additional data types used in the metamodel. Figure 42 specifies LangStringSet as set of elements of rdf type
“langString”.

80 | The Metamodel of the Administration Shell

Table 5 Basic Types used in Metamodel

Type Basic Type

string
DataTypeDef

Note: any xsd simple type as string
BlobType byte[0..*]

string
MimeType

Note: any mimetype as in RFC2046.
PathType string
QualifierType string
ValueDataType any xsd atomic type

Figure 42 Data Type LangStringSet

Class:

Explanation:

Inherits from:

Attribute

class Types - LangStringSet/

«dataType» «dataType»
LangStringSet @p———— langString

LangStringSet <<DataType>>

A set of strings, each annotated by the language of the string. The meaning of the string
in each language shall be the same.

Explanation

(*=mandatory)

langString

A string in a specified language. | langString

4.7.23 Tem

plates, Inheritance, Qualifiers and Categories

On a first glance there seem to be some overlapping between the concept of data specification templates, inheritance,
qualifiers and categories. In this clause the commonalities and differences are explained and hints for good practices are

given.

In general extension of the metamodel by inheritance is allowed. As an alternative also templates might be used.

Templates should only be used if different instances of the class follow different schemas and the
templates for the schemas are not known at design time. Templates might also be used if the overall
metamodel is not yet stable enough or a tool does support templates but not (yet) the complete metamodel.

However: when using non-standardized proprietary data specification templates interoperability cannot
be ensured and thus should be avoided whenever possible.

In case all instances of a class follow the same schema then inheritance and/or categories should be used.

Categories can be used if all instances of a class follow the same schema but have different constraints
depending on its category. Such a constraint might specify that an optional attribute is mandatory for this
category (like for example the unit that is mandatory for properties representing physical values).
Realizing the same via inheritance would lead to multiple inheritance what is to be omitted.

Qualifiers are used if the semantics of the element is the same independent of its qualifiers. It is only the
quality or the meaning of the value for the element that differs.

The Metamodel of the Administration Shell | 81

4.8 Predefined Data Specification Templates

4.8.1 Concept of Data Specification Templates

Figure 43 Concept of Data Specification Templates

class Data Specifications (T... /

Identifiable

«abstract»
DataSpecification

1

«abstract»
DataSpecificationContent

Note: The Data Specification Templates do not belong to the metamodel of the Asset Administration Shell. In
serializations that choose specific templates the corresponding data specification content may be directly
incorporated.

It is required that a data specification template has a global unique id so that is can be referenced via
HasDataSpecification/dataSpecification.

A template consists of the DataSpecificationContent containing the additional attributes to be added to the element
instance that references the data specification template and meta information about the template itself (this is why
DataSpecification inherits from Identifiable). In UML these are two separated classes.

4.8.2 Predefined Templates for Property and Value Descriptions

Conformant to the rules in Clause 5.2.2 the following data specification template should be referenced via the id
“http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

(in hasDataSpecification/dataSpecification).

This namespace has the qualifier “IEC:” Examples: IEC:DataSpecificationlEC61360/preferredName or IEC:
DataSpecification|EC61360/level Type/Min or IEC:LevelType/Min

Note: The data specification template is not identical to the data specification content as shown in Figure 44.

82 | The Metamodel of the Administration Shell

Figure 44 Data Specification Template for defining Property Descriptions conformant to IEC 61360

class Data Specification conformant to IEC61360-1 2017-07 and 1SO13584-42 2010-12-15/

«enumeration»
DataTypelEC61360
DataSpecificationContent DATE
«Template» STRING
DataSpecification|EC61360 STRING_TRANSLATABLE

REAL_MEASURE

+ preferredName: LangStringSet | _ =l REAL_COUNT
+ shortName: LangStringSet [0..1] RE AL_CURRENCY
+ unit; string [0..1] BOOL_EAN
+ unitld: Reference [0..1] URL
+ sourceOfDefinition: string [0..1] RATIONAL
+ symbol: string [0..1] RATIONAL_MEASURE
+ dataType: DataTypelEC61360 [0..1] TIME B
+ definition: LangStringSet [0..1] TIMESTAMP
+ valueFormat: string [0..1]
+ valueList: ValueList [0..1]
+ value: ValueDataType [0..1]
+ valueld: Reference [0..1] === «enumeration»
+ levelType: LevelType [0..7] LevelType
Min
Max
Nom
Typ

Figure 45 Example Property from eCl@ss

class Data Specification conformant to IEC61360-1 2017-07 and 1SO13584-42 2010-12—15/

Property (12-BAAL20 Max. rotation speed

short name

Format INTEGER_MEASURE

Unit of measure 1/min

Definition: Greatest permissible rotation speed with which the motor or feeding unit may be operated

Values:

The Metamodel of the Administration Shell | 83

Figure 46 Example Property Description with Value List from eCl@ss

Property 02-BAE122 Cooling type

short name -

Format STRING

Definition: Summary of various types of cooling, for use as search criteria that limit a selection
Values:

0173-1#07-BABS495001 - Air-air heat exchanger

0173-1#07-BABG50#001 - Air-water heat exchanger
0173-1#07-BAB592#001 - alien

0173-1#07T-BABG11#001 - closed, external air-cooling
0173-1#07-BABG10£001 - closed, internal air-cooling
0173-1#07-BAB591£003 - free cooling

0173-1#07-BABT02£003 - Heat exchanger against other cooling medium
0173-1#07T-BABG5TH003 - open circuit, external cooling
0173-1#07T-BABG565£003 - open circuit, internal cooling
0173-1#07-BAB535%003 - other form of cooling with primary air coolant
0173-1#07T-BAB5365003 - other primary non-air coolant
0173-1#07T-BABSTA#003 - zelf

Figure 47 Example Value Description from eCI@ss

Value 0173-1#07-BABGSTHOO3
Classification open circuit, external cooling
short name

Definition:

Figure 48 Example Value Desription from eCl@ss Advanced

Trchange Text = Replace Mpeiete [Elcopy

General Admin Aftribute History Release
Value BABG57

IRDI 0173-1#07-BAB657#003
eCl@ss v5 ID BAB657001

Preferred Name open circuit, external cooling
Short Name

Definition

Source of Definition
Note to Definition

Data Type String
Value specification Coded values
Exception No

The Type “ValueList” lists all the allowed values for a concept description for which the allowed values are listed in an
enumeration. The value list is a set of value reference pairs.

84 | The Metamodel of the Administration Shell

Figure 49 Type “ValueList”

object Types - ValueList/

«dataType»
ValuelList
{Reference to
............... ConceptDescription
with category
L VALUE}
«dataType»

ValueReferencePairType

+ value: ValueDataType
+ valueld: Reference

(from Types)

Class: ValueList <<DataType>>

Explanation: A set of value reference pairs.

Inherits from: --

Attribute (*=mandatory) Explanation

A pair of a value together with | ValueReferencePair
its global unique id.

valueReferencePairType

Class: ValueReferencePair <<DataType>>

Explanation: A value reference pair within a value list. Each value has a global unique id defining its
semantic.

Inherits from: -

Attribute Explanation

(*=mandatory)

value* the value of the referenced | ValueDataType | aggr 1
concept definition of the value in
valueld.

valueld* Global unique id of the value. Reference ref 1

For the meaning of the content attributes of the IEC61360 data specification template please refer to IEC 61360 and/or
eCl@ss.

The template can be used to describe properties and values, both.

See Figure 50 for how data specification templates are related to concept descriptions (showing all inherited attributes as
well). In a similar way templates for other elements in the information model can be defined and used.

The Metamodel of the Administration Shell | 85

Figure 50 Concept Descriptions for Properties conformant to IEC61360

class Predefined Data Specifications Template for Property Descriptions (incl. inherited attributes)/

Data Specification Templates HasDataS;JIZ(;ZIt?ffézg
Identifiable ConceptDescription
«abstract + isCaseOf. Reference [0.."]
DataSpecification ::HasDataSpecification
“*ldentifiable + dataSpecification: Reference [0..]
+ administration: Administrativelnformation [0..1] :Identifiable
+ identification: Identifier éig:?:clegig?alj + administration: AdministrativeInformation [0..1]
-:Referable dataSpecification| + jdentification: Identifier
+ idShort: string ::Referable
+ category: string [0..1] + idShort: string
+ description: LangStringSet [0..1] + category: string [0..1]
+ parent: Referable* [0..1] + description: LangStringSet [0..1]
+

parent: Referable* [0..1]
A

|
may be used as Data Specification
|

1

«Template»
«abstracty DataSpecificationlEC61360
DataSpecificationContent e

preferredName: LangStringSet
shortName: LangStringSet [0..1]
unit: string [0..1]

unitld: Reference [0..1]

source OfDefinition: string [0..1]
symbol: string [0..1]

dataType: DataTypelEC61360 [0..1]
definition: LangStringSet [0..1]
valueFormat: string [0..1]
valueList: ValueList [0..1]

value: ValueDataType [0..1]
valueld: Reference [0..1]
levelType: LevelType [0..]

+ 4+ + + + + + + + + + + +

The following tables recommend to use specific categories to distinguish which kind of concept is described. They also
give advice which attributes need to be filled for which category of concept description. These tables are not part of the
specification because in a way the existing template for describing concept descriptions for properties and coded values
is misused to also describe other concepts. In later version of the standards and this specification there might be concept
descriptions better suited for the purpose.

86 | The Metamodel of the Administration Shell

e
(=g
=
(o
c
—
@D
N
N

Category of SubmodelElement

VARIABLE

preferredName?!? m m m m m
shortName (m) (m) (m) (m) (m)

unit (m) (m) (m) - (m)

unitld (m) (m) (m) -- (m)
sourceOfDefinition 0 0]] 0

symbol 0 0 0 - -

dataType m* m’® m’* i:zRAINNsG LATABLE Ei?:S:lAL_* >
definition (m) m m m m
valueFormat 0 0] - 0

valueList - 0 0 -- --

value m -- - - -

valueld 0 - - - -

levelType -- -- -- -- {Min, Max}

Table 6 Concept Description with IEC612360 Data Specification Template for Properties and Ranges

12 m= mandatory, o = optional, (m) = conditionally mandatory or recommended to be added

13 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

14 Except STRING_TRANSLATABLE. In this case MultiLanaguageProperty shall be used.

15 Except STRING_TRANSLATABLE. In this case MultiLanaguageProperty shall be used.

16 Except STRING_TRANSLATABLE. In this case MultiLanaguageProperty shall be used.

The Metamodel of the Administration Shell | 87

-90U8J8)9Y

=
=
=
(o
=
=
@D
i
5

Category
Submodel-
Element

preferredName
19

shortName (m) (m) (m) (m)
unit -- - - -
unitld -- - - -
sourceOf- 0 0 0 0
Definition

symbol -- - - -
dataType STRING URL STRING -
definition m m m m

valueFormat -- -- - -

valueList -- -- - -

value -- -- -- --

valueld -- -- -- --

levelType -- -- -- --

17 m= mandatory, o = optional, (m) = conditionally mandatory or recommended to be added
18 Template only used until explicit template for defining the corresponding types of elements are available.

19 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

88 | The Metamodel of the Administration Shell

Table 7 Concept Description with IEC612360 Data Specification Template for other Data Elements and
Capabilities

)
@
>
=3
o
=
m
@
=
@
=
~—+
2
(o<}

Category of Submodel-
Element

preferredName® m m m m m

shortName (m) (m) (m) (m) (m)

unit - - - - -

unitld - -- -- - -

sourceOfDefinition 0 0 0 0 0

symbol - - - - -

dataType - -- -- -- --

definition m m m m m

valueFormat -- -- - - -

valueL.ist -- - -- - -

value -- - - - -

valueld - - - - -

levelType - - - - -

Table 8 Concept Description with IEC612360 Data Specification Template for other Submodel Elements Data

20 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

The Metamodel of the Administration Shell | 89

V|

=3
=
o
c
—
@D
~
i)

category QUALIFIER
preferredName m m m
shortName (m) (m) (m)
unit - - -
unitld - - -
sourceOfDefinition 0 0 0
symbol - - -
dataType - m --
definition m m m
valueFormat - 0 --
valueL.ist -] -
value - - -
valueld - - -
levelType -- -- --

Table 9 Other Elements with semanticld

4.8.3 Predefined Templates for Unit Concept Descriptions

Conformant to the rules in Clause 5.2.2 the following data specification template should be referenced via the id
“http://admin—shell.io/DataSpecificationTemplates/DataSpecificationTemplates/DataSpecificationPhysicalUnit/l/O” (ln
hasDataSpecification/dataSpecification).

The recommendation is to use “IEC:” as namespace qualifier as already discussed in Clause 4.8.2.
Examples: IEC:DataSpecificationPhysicalUnit/unitName or IEC:DataSpecificationPhysicalUnit/definition

Units are used in data specification templates for properties when defining the unitld
(IEC:/DataSpecificationlEC61250/unitld, see Figure 51). The unit value corresponds then to the unitName as specified
in the concept description referenced via unitld.

The data specification template for concept descriptions for units (see Figure 51) is defined conformant to IEC61360-1
and 1S013854-42 and is following the xml schema UnitML. An example unit is shown in Figure 52.

90 | The Metamodel of the Administration Shell

Figure 51 Data Specification Tempate for Physical Units (DataSpecificationPhysicalUnit) and its Usage

class Predefined Data Specifications Template for Property and Unit Descriptions (incl. inherited attributes)/

|
may be used as Pata Specification

DataSpecificationContent

«Template»
DataSpecificationlEC61360

HasDataSpecification
Identifiable
ConceptDescription
+ isCaseOf: Reference [0..%]
A)

1
may be used as Data
Specification
|
|

+ + 4+ + + + + + + + + + +

preferredName: LangStringSet
shortName: LangStringSet [0..1]
unit: string [0..1]

unitld: Reference [0..1]

source OfDefinition: string [0..1]
symbol: string [0..1]

dataType: DataTypelEC61360 [0..1]
definition: LangStringSet [0..1]
valueFormat: string [0..1]
valueList: ValueList [0..1]

value: ValueDataType [0..1]
valueld: Reference [0..1]
levelType: LevelType [0.."]

DataSpecificationContent

«Template»
DataSpecificationPhysicalUnit

+ + 4+ + + + + + + + + + +

unitName: string

unitSymbol: string

definition: LangStringSet
siNotation:; string [0..1]
siName: string [0..1]
dinNotation: string [0..1]
eceName: string [0..1]
eceCode: string [0..1]
nistName: string [0..1]

source OfDefinition: string [0..1]
conversionFactor; string [0..1]
registrationAuthorityld: string [0..1]
supplier: string [0..1]

may reference a concept description using this

template for unitid

The Metamodel of the Administration Shell | 91

Figure 52 Example of a concept description for a unit: 1/min (from eCl@ss)

class Data Specification Units conformant to IEC61360-1 and 1SO13584-42 (NEW)/
1D 0173-1#05-AAA650#002
Name 1/min
Primary language German
Structured Naming min~?
Short Name 1/min
Definition reciprocal of the unit minute
Source NIST Special Publication 811:1995
Comment
S| Notation 1/min
Sl-Name reciprocal minute
DIN Notation min!
ECE Name reciprocal minute
ECE-Code C94
NIST-Name revolutions per minute
Conversion factor 1.0/60
Registration authority ID 0173-1
Supplier ECL

4.8.4 Embedded Data Specifications
This specification predefines data specifications that can be used within an AAS to ensure interoperability.

Thus, some serializations or mapping support exactly those data specifications defined in this specification and no others
although the metamodel as such is more flexible and would also support proprietary data specifications.

In this case of restricted data specifications to be used the notation is that of “embedded data specifications”. Figure 53
the realization is explained: instead of a set of external global references to externally defined data specifications a set of
pairs consisting of an external global reference to a data specification as well as the data specification content itself is
directly “embedded”. In this realization the data specification content belongs to the schema etc. whereas in the general
concept the data specification including its content are not part of the schema. This is similar to the concept of semanticlds:
either it is an external global reference to an external concept dictionary or it is a reference to a concept descriptions
within the schema. However, for semanticld we only allow exactly one reference, whereas for data specifications a set of
data specifications references is allowed.

92 | The Metamodel of the Administration Shell

Figure 53 Realization of Embedded Data Specifications

class Data ifi (Te)-E Data ifi /
Identifiable
ConceptDescription
+ isCaseOf: Reference [0.."] ‘
Data Specification Template Data Specification Templates
[dentifiable [dentifiable «abstract
HasDataSpecification
«abstract» realized as «abstract» —— -
DataSpecification [~ """~ r—- DataSpecification + dataSpecification: Reference [0.."]
T
) V\ realwz‘ed as
~ !
N N N v
AN «abstracty
AN HasDataSpecification
> ~N
N
N .
«exteral
global™ N
reference» \
N
~N
N
1 N ~N
! > N 0..*
«abstract» <abstrach N
i H realized as . .
DataSpecificationContent | - — - — — - fFaizecas_____ DataSpecificationContent EmbeddedDataSpecification ‘
+ dataSpecification: Reference [0..1] ‘

DataSpecificationlEC61360

preferredName: LangStringSet
shortName: LangStringSet [0..1]
unit: string [0..1]

unitld: Reference [0..1]

source ODefinition: string [0..1]
symbol: string [0..1]

dataType: DataTypelEC61360 [0..1]
definiion: LangStringSet [0..1]
valueFormat: string [0..1]
valueList: ValueList [0..1]

value: ValueDataType [0..1]
valueld: Reference [0..1]
levelType: LevelType [0.."]

+ + + + + + + + + + + + +

5 Mappings to Data Formats to Share 14.0-
Compliant Information

94 | Mappings to Data Formats to Share 14.0-Compliant Information
5.1 General

It should be possible to share information between different systems throughout the area covered by the entire RAMI4.0
model [1] [2]. OPC UA has been targeted as a format for information models in the domain of production operations, but
there is a need for other formats for the other areas and the interrelationships between them.

This document describes the AssetAdministration Shell together with its submodels in different data formats?:

Table 10 Distinction of different data format for the AAS
Data format Purpose / motivation

OPC UA Information | Access to all information of the administration data and sharing of live data within production
models operations. Access for higher-level factory systems to this information.

Sharing of type and instance information about assets, particularly during engineering. Transfer

AutomationML of this information into the operational phase (cf. OPC UA and the corresponding mapping)
XML, JSON Serialisation of this information for the purpose of technical communication between phases.
RDF Mapping of this information to enable full use of the advantages of semantic technologies.

Figure 54 Graphic View on Exchange Data Formats for the Asset Administration Shell?

AutomationML

Asset Administration Shell ~—OPC-L
Representation v Information
modell

Data Exchange Format/
Payload

XML & JSON & RDF

Connected
World
Enterprise

OPC-UA /" Work Center
(Client/Server =~ I
Communication : . & Pub/Sub) Control Device
' . Field Device
Product

Concept Description

Source: Bosch Rexroth AG. Plattform Industrie 4.0
The specifications of the preceding clause are now specifically transferred to the individual data exchange formats.

5.2 General Rules

In the following we distinguish between global and model keys. They are defined as follows:
e Aglobal key is a key with idType <> IdShort. A global key can be local (local = true) if it references an
element within the same AAS, for example a ConceptDescription or another Submodel.

o A model key is a key with type <> GlobalReference, i.e. it references a model element within the same
AAS (local = true) or within another AAS (local=false).

e Asimilar distinction is done for references:

21The abbreviated use of the word “data formats” includes the use of conceptual advantages such as information models,
schemes, transmission protocols, etc.

22 Only data formats considered in this document so far are mentioned in the figure.

Mappings to Data Formats to Share 14.0-Compliant Information | 95

o A model reference is a reference key chain in which the last key is a model key.

e A global reference is a reference key chain in which the last key is a global key with type =
GlobalReference.

e An external global reference is a global reference for which the first key in the reference key chain is
not local (local = false).

e Alocal global reference is a global reference for which the first key in the reference key chain is local
(local = true).

The following rules hold and ensure that potential cyclical References can be serialized:

e In a Reference key chain, a key with local “true” is followed either by no key or a key with "local" is
"true".

e In a Reference key chain, a key with local “false” is followed either by no key or a key with "local" is
"true"

5.2.1 Serialization of Values of Type “Reference”

In some mapping or serializations the Type “Reference” is converted into a single string. In this case we recommend to
use the following serilization:

<Reference> ::= <Key>{,<Key>}*

<Key> ::= (<KeyType>)(<Local>)[<KeyldType>]<KeyValue>
<KeyType> ::= value of AAS:Key/type

<Local>::= local | no-local

<KeyldType> ::= value of AAS:Key/.idType

<KeyValue> ::= value of AAS:Key/value

With <Local> == local if AAS:Key/local = True and no-local if AAS:Key/local == False.

Examples:
(ConceptDescription)(local)[IRDI1]0173-1#02-BAA120#008
(GlobalReference)(no-local)[IRDI]0173-1#01-AFZ615#016
(Submodel)(local)[IRI]http://customer.com/demo/aas/1/1/1234859590,(Property)(local)[IdShort] Temperature

5.2.2 Semantic Identifiers for Metamodel and Data Specifications

To enable the unique identification of concepts as used and defined in the metamodel of the asset administration shell
rules for creating such identifiers are defined.

The name spaces and their qualifier are defined as follows:
<Namespace> ::= (<AAS Namespace>[<Data Specification Namespace>)
<Namespace Qualifier> ::= <AAS Namespace Qualifier>| Data Specification Qualifier>
<AAS Namespace> := <Shell-Namespace>"/aas/”<Version>
<Data Specification Namespace> ::=
<Shell-Namespace>“/DataSpecifications/“<idShort of Data Specification><Version>
<Shell-Namespace> ::= “http://admin-shell.io/”
<Version> ::= <Digit>/<Digit>

<Digit>::=1[2[3[4]5]6] ..

96 | Mappings to Data Formats to Share 14.0-Compliant Information

Up to now only one data specification is defined, otherwise there would be a list of possible data specification namespaces.
The order is identical to the order of the data specification namespaces. l.e. IEC: maps to http://admin-
shell.io/ds/IEC61360.

<AAS Namespace Qualifier> n= “AAS:”
<Data Specification Qualifier> ::= defined per Data Specification
A concrete unique identifier is defined as follows:
<AAS Unique Concept Identifier> ::=(<Namespace> | <Namespace Qualifier>)”"/”<AAS Concept Identifier>
<AAS Concept Identifier> ::= <AAS Class Name>[(<AAS Attribute>[<AAS Enumeration>)]
<AAS Attribute> ::= “/”<AAS Attribute Name>[{“/”<AAS Attribute Name>}*]

<AAS Enumeration> ::= [{“/”<AAS Attribute Name>}*]"/”<AAS Enumeration Value>

Examples for valid unique AAS Concept Identifiers:
http://admin-shell.io/aas/2/0/AssetAdministrationShell/administration/version
AAS:AssetAdministrationShell/administration/version

AAS:/Asset/kind/Instance

The application of the pattern is explained in the following:
The concept identifier of a Class follows the pattern:
<AAS Class name>
This also holds for abstract classes and types including Enumerations.
Examples: AAS:View, AAS:Submodel, AAS:Qualifier, AAS:Reference, AAS:MimeType, AAS:IdentifierType

Attributes of Classes are separated by “/”. Also inherited attributes can be referenced like this if the concrete referable is
important in the context.

Basic Pattern:

<AAS Class name>"/"<AAS Attribute Name>

Examples®: AAS:Referable/idShort or AAS:Property/idShort or AAS:Asset/assetldentificationModel or
AAS:Qualifier/semanticld or AAS:Identifier/id

This also holds for attributes of attributes if the cardinality of the attributes involved is not greater than 1:
<AAS Class Name>"/"<AAS Attribute Name>[{“/”<AAS Attribute Name>}*]

Examples: AAS:Submodel/identification/id or AAS:Identifiable/administration/version

This also holds for values of enumerations
<AAS Class Name>[{“/”<AAS Attribute Name>}*][“/”<AAS Enumeration Value>]

Examples: AAS:Submodel/identification/idType/IRDI or AAS: Identifiable/identification/idType/IRDI or
AAS: Identifier/idType/IRDI or AAS:IdentifierType/IRDI

In case of an attribute with cardinalitét greater than 1 no further attributes or enumeration values can be added.

23 For simplicity most examples use the namespace qualifier and not the full path of the namespace.

Mappings to Data Formats to Share 14.0-Compliant Information | 97

Note: Although the attribute name in UML is always singular even if the cardinality is > 1 the attribute name is annotated
by the plural “s”.

Examples: AAS:Operation/InputVariables or AAS: AssetAdministrationShell/submodels or
AAS:SubmodelElementCollection/submodelElements

AAS: AssetAdministrationShell/submodels/administration/version or AAS:Submodel/Property/idShort are no valid
concept identifier.

A concrete example how these rules are applied is given in Annex H.iii: the identifiers are used as values for the
RefSemantic attribute in AutomationML Mapping of the Asset Administration Shell. These identifiers are also used in
OPC UA (Clause 5.7) to describe the semantics of the metamodel via the OPC UA HasDictionaryEntry reference type.

For specific serializations and mappings additional identifiers might be needed. For example for a set of asset
administration shells or a set of available assets or concept descriptions etc. Here, the AAS metamodel and specification
does not give any recommendations.

Data Specifiation Handling is special. Data Specification Templates do not belong to the metamodel of the AAS.
However, only the predefined data specification templates as specified in this specification are supported in the
serializations. For these the corresponding name space qualifier are defined individually.

Examples: IEC:DataSpecificationlEC61360/preferredName (see Clause 4.8.2) or IEC:DataSpecificationlEC61360/unit
(see Clause 4.8.3).

For the data specification itself the AAS namespace is used: AAS:DataSpecifciationlEC61360

In xml and JSON data specifications are embedded into the schema itself wusing the attribute
“embeddedDataSpecification”. For these no concept identifier shall be used. I.e.

AAS:ConceptDescription/embeddedDataSpecification

is not a valid concept identifier. AAS:DataSpecificationContent is a valid concept identifier.

5.3 Unified example

The following example is used to demonstrate the main features of the data formats as explained in the following clauses
for different data formats. Intention is to motivate the equivalency of information in different representations. The
examples themselves can be found in the annex.

It shows an AAS with three submodels: TechnicalData, OperationalData and Documentation. The asset, an motor, that it
is representing has the global ID “http://customer.com/assets/KHBVZJISQKIY™.

The TechnicalData submodel contains data that is available at engineering time: the maximum rotation speed measured
in 1/min. Its semanticld is 0173-1#02-BAA120#008. It is an eCl@ss IRDI. However, in this example a copy of the
eCl@ss entry values are copied to a corresponding concept description with the same IRDI. The unit “1/min” has also a
unique id, “0173-1#05-AAA650#002”.

The third submodel “Documentation” contains a pdf document, the operating manual.

0005 BNjeA
sabaun adhanjea

1 JOJ0W BYY YoIym yum paads uonelos yqissiuuad 1saleaun) ua]

ID J3P0 JOIOW J3P JBUD[EM 1w ‘[YBZYai(] DISSEINZ 21SYIOH [2p] uonuyap
FUNSYIN HIDALNI adf | e1ep
Z00#059%WY-S0#1-££ 10 Iyl (1e307-0u) (30uas3ja41eq0|D) PN
unwy/| Jun
BUWENUOYS
[paads uonejos xep [ua]
nlu |yezy=u ¥ewfap] BwenpauRid
< 09E 19231 JuAju0) uonedyads ejeg
m wauopuoneyadseeq
o
.m uonesypadsnegsey AINDSIZA
- gHY/masse/woxswoisna//fdny
— $0Isels| A /
c
.m 4 uoIsIA)
m UDISIBA
e B00#0ZLYVE-Z0#L-EL10 Pt
(@] 1yl sadALp
@) $19qWIWI IGERHUIP|
1
Q ALH3d0Hd fuoBaed
= o paadsucneloyxen Loysp
(<) =} SI3qUIBW 3]qeId)3Y
5 ©
S S
N 2 Jayyen
= g d-jenuepyBunesadg/xsee/ <- - B E
.ﬂ.u m 800£07 L Yv8-20#1-£/ L0 [I0¥] (1e307) (uondudsagidaouod) ‘PIUBWSS #pdjenuepBuy o/xsee/ <- _jad Adenbia.
..nm _.vEA Qi apuewas (syuawapa |) Jenuepbupesadg, (o] »
m s uElSU| ‘puny [25161462582992YL/1/L/2dA3/Wo>12Wo3sn>-0v1//d3u ‘4Nl ..E.-E!lson..ﬂ ’
‘U
_m © [urw/L] oLy = .paadsuoneioy, [ITF
o) HALINVEY MioBated
..m mu paadsuoneioyrep poySPI [S£6L04¥¥3D19690V/ L/1/32UE)SUL/WIODIAWOISNY OFI//-dRlY ‘THN] ;%:H r
o m U e [u1wi/L] 0005 = .paadsuoneIoyXe, ﬁm_
e ._._n.u_ USRS Ppowans [¥813£58VQ8YOLLYL/L/1/2dk /wor awolsny opy// diy 'hun] eseareupay. [T »
(%) 5]
& £ WawO) Luauay OIS/ TN 0 (8916 L6OL €10L SLL6/mee o3 raweisn/ -y) seropertumes. (1] -
c = |
= m digy ededsyiop, a4
w % S [m} - (xsee*fdos - paydung - Jojop3gomas gy ajdwexg ey Aeixne) xsee payduug - 1010y 0oAas sy 2|dwexy - iauojdxg abeyaeg ¥eyy E
S o
-
_— >
0 2
o LL

Mappings to Data Formats to Share 14.0-Compliant Information | 99
5.4 XML

5.4.1 General

In the following clauses an overview of the main concepts of the AssetAdministration Shell XML serialization is
presented. For import and export scenarios the metamodel of an AssetAdministration Shell needs to be serialized. A
serialization format is XML. The information is divided in three parts. The first part discusses the rules, in the second part
are examples for some specific rules and in the third part the schema and a complete example is shown in the annex.

5.4.2 Introduction

eXtensible Markup Language (XML?*) is very well suited to deriving information from an IT system, perhaps to process
it manually, and then to feed it into another IT system. It therefore meets the needs of the information sharing scenario
defined in Section 0. XML provides for the possibilities of scheme definitions which can be used to syntactically validate
the represented information in each step. For this reason, this document provides basic scheme definitions to permit a
validation of information which is shared.

The XML schema definitions are divided into three different files:

e Core definitions for the AssetAdministration Shell and its export container: aas.xsd
o Namespace: "http://www.admin-shell.io/aas/2/0"

e |EC61360 datatype definition: iec61360.xsd
o Namespace: "http://www.admin-shell.io/I[EC61360/2/0"

e Attributed based access control definition: aas_abac.xsd
o Namespace: "http://www.admin-shell.io/aas/abac/2/0"

The namespace reflects the current version (2.0) of the specification.

Subsequently, an example in XML is provided.

5.4.3 Rules

The main concepts of the XML schema and the resulting XML serialization are explained by the following rules. Rules
1 through 6 are general rules, while rules 7 through 11 are specific to References.

(1) XSD global Types are used for modeling

For reusability XSD global types will be used for modeling. There will be a naming convention
<informationModelName>+"_t’

(2) If present, names are taken from the information model.
For comprehensibility reasons the XML key names should be the same as the representing Element in the metamodel.
(3) All identifiables have an aggregation on root level.

The identifiables are AssetAdministrationShells, Assets, Submodels, ConceptDescriptions. To reduce redundancy
instances, they are located exclusively in the top-level aggregation.

(4) Repeating elements and their types will get the same names of their instances in plural.

If the element has a cardinality of n>1 a parent element will be used with the name of the name of the element in plural.
For example, each element in the aggregation assets needs to be an asset.

(5) ldentifiables which are not in the top-level aggregations are only references to the corresponding instances in
one of the top-level aggregations.

This rule completes the concept of rule 3. There should be no redundant identifiable in the serialized metamodel.

24 see: https://www.w3.0rg/TR/2008/REC-xmI-20081126/

100 | Mappings to Data Formats to Share 14.0-Compliant Information

(6) For elements with type LangStringSet an aggregation element called langStringSet_t is added. For the single
element a language tag “lang” is added.

For internationalization purposes this rule is necessary.

(7) The attributes of a key in a reference except for the value itself are realized as XML attributes.
(8) Data Specification Templates are directly added to the Concept Description because up to now only property
descriptions are supported.

Additionally, a new element EmbeddedDataSpecification is introduced that has two attributes: one for the global reference
to the data specification identifier and one for the content of the data specification.

(9) Attribute based access control is added as a separate XML schema that is linked by
AssetAdministrationShell/security

5.4.4 Example for Top-Level Structures

One serialization describes one asset Administration Shell environment that is a collection of Administration Shells. The
root element of the AssetAdministration Shell environment has 4 aggregations. For each identifiable class, one
aggregation is featured, as required by rule 3.

Figure 56 Top level structure of an AssetAdministration Shell environment mapped to XML Schema

I L. -
assetAdministrationShells_t

[e] AssetAdministrationShell [0.*] assetAdministrationShell_t *:«

aasenv_t assets_t

[e] assetAdministrationShells [0.1] assetAdministrationShells_t [e] asset [0.%] asset_t *:r

[e] assets [0.1] assets_t]
[e] submodels [0.1] submodels_t l— [E] submodels_t
[e] conceptDescriptions [0.1] conceptDescriptions_t % [e] submodel [0.¥] submodel_t *:«
conceptDescriptions_t
== [€] conceptDescription [0.*] conceptDescription_t *:r
Source: Plattform Industrie 4.0 le

Note: XSD structuring was done with Eclipse tool chain

The resulting XML is the minimal XML:

Table 11 Minimal XML for top level structure

<?xml version="1.0" encoding="UTF-8"?>

<aas:aasenv xmins:aas="http://www.admin-shell.io/aas/2/0"
xmins:abac="http://www.admin-shell.io/aas/abac/2/0"
xmins:aas_common="http://www.admin-shell.io/aas_common/2/0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:IEC="http://www.admin-shell.io/IEC61360/2/0"

xsi:schemaLocation="http://www.admin-shell.io/aas/2/0 AAS .xsd http://www.admin-shell.io/IEC61360/2/0
IEC61360.xsd http://www.admin-shell.io/aas/abac/2/0 AAS_ABAC.xsd">

<aas:assetAdministrationShells></aas:assetAdministrationShells>
<aas:assets></aas:assets>

<aas:submodels></aas:submodels>

Mappings to Data Formats to Share 14.0-Compliant Information | 101

<aas:conceptDescriptions></aas:conceptDescriptions>

</aas:aasenv>

Note: ¥ designates line-wrap for purpose of layout

5.4.5 XSD Model Groups

There are a number of attribute groups in the UML model — i.e. identifiable or hasSemantics. These groups are modelled
as XSD model groups so they could be reused as anonymous groups in different places.

Note: Identifier/id is not modelled as attribute but a typical identification looks like this:
<aas:identification> idType="IRI">www.admin-shell.io/aas-sample/2/0</aas:identification>

Figure 57 XSD Model Groups

assetAdministrationShell_t | i langStringSet_t
[€] idShort [1.1] idShort_t E ‘ [langString [1.*] langString_t %
[e] category [0.1] string ‘
- [e] description [0.1] langStringSet_t E [E] reference_t
- [€] parent [0.1] reference_t % e [Elkeys keys_t [+
Elden‘-ﬂf—lcatlc-m [1.1] |den?|f-|tat|c-mj r_\‘ i ——
[e] administration [0.1] administration_t = [E] identification_t
el gt} ome [e] embeddedDataSpecification [0.¥] embeddedDataSpecification_t 1 @ idType (idTypeType)
[€] derivedFrom [0.1] reference_t l
[e] assetRef [1.1] reference_t l [l administration_t
[e] submodelRefs [0.1] submodelRefs_t % [el version [0.1] string
[views [0.1] viewst 4 [e] revision [0.1] string
[#] conceptDictionaries [0.1] conceptDictionaries_t l —
@ security [0.1] security_t % “ (-embeddedDa‘taSpecvfﬁcatlonﬁT : |
[e] dataSpecificationContent [0.1] dataSpecificationContent t [+
[e] hasDataSpecification [0.1] reference_t *lf

This is realized in the according XSD as follows:

Table 12 Using XSD Model Groups

<complexType name="assetAdministrationShell_t">
<sequence>

<group ref="aas:identifiable"></group>
<group ref="aas:hasDataSpecifications"></group>
<element name="derivedFrom" type="aas:reference_t" minOccurs="0" maxOccurs="1"></element>
<element name="assetRef" type="aas:reference_t" minOccurs="1" maxOccurs="1"></element>
<element name="submodelRefs" type="aas:submodelRefs_t" minOccurs="0" maxOccurs="1"></element>
<element name="views" type="aas:views_t" minOccurs="0" maxOccurs="1"></element>

<element name="conceptDictionaries" type="aas:conceptDictionaries_t" minOccurs="0"
maxOccurs="1"></element>

<element name="security" type="abac:security_t" minOccurs="0" maxOccurs="1"></element>

</sequence>

www.admin-shell.io/aas-sample/2/0

102 | Mappings to Data Formats to Share 14.0-Compliant Information

</complexType>

Note: due to XSD group mechanism, hasDataSpecification maps to an element of embeddedDataSpecification_t
and identifiable maps to multiple elements in Figure 57.

5.4.6 Keys and References

Keys and References (see 4.7.21) are mapped on the same XML schema construct. Some of the attributes have
enumerations defined — these are mapped on string constraints.

Figure 58 Keys and References

= Fragmentld
by i= IdShort

= IRDI

ZIRI

P

El (typeType)

= AccessPermissionRule
= AnnotatedRelationshipElement]
i= Asset
= AssetAdministrationShell
i= BasicEvent
= Blob
key_t | = Capability
reference_t keys_t idType (idTypeType) L = ConceptDescription
El keys keys_t % = iFlkey [0.7] key_t % local boolean ‘ = ConceptDictionary
type (typeType) - i= DataElement
= Entity
= Event

= File

= FragmentReference

= GlobalReference

i= MultiLanguageProperty
= Operation

= Property

= Range

i= ReferenceElement

‘= RelationshipElement

= Submodel

i= SubmodelElement

= SubmodelElementCollection

=View

Mappings to Data Formats to Share 14.0-Compliant Information | 103

Figure 59 Constraints and Qualifiers

formula_t

== [8] dependsOnRefs [0.1] references_t +

constraint_t qualifier_t
[el formula [0.1] formula_t = [e] valueld [0.1] reference t
g [e] qualifier [0.1] qualifier_t !— (el value [0.1] valueDataType_t
(€] type [1.1] qualifierType_t

[e] valueType [1.1] dataTypeDef_t

@ ==—{e] semanticld [0.1] semanticld_t

Lt ———+

5.4.7 Asset Administration Shell Mapping

Asset Administration Shells are mapped using the following XML Schema construct — it consists of a set of meta data
parameters and mostly links to other parts of the XML document or to external elements (based on keys and references).

Figure 59 Overview on mapping and meta-data

assetAdministrationShell_t | reference_t
[l idShort [1.1] idShort_t : - [Elkeys keyst [

(€] category [0..1] string T
o 5 | [&] submodelRefs_t
[e] description [0.1] langStringSet_t |
|~ [e] submodelRef [0.7] reference_t
@/ ome et —[€] parent [0.1] reference_t |
[e] conceptDescriptionRefs 0.1] conceptDescriptionRefs_t +
P e (0.1 P L - | : [E] views_t
[e] identification [1.1] identification_t + = =
e — | | [E view [0.%] view_t
[e] administration [0.1] administration_t
B ome [e] embeddedDataSpecification [0.*] embeddedDataSpecification_t : H conceptDictionaries t
[e] derivedFrom [0.1] reference_t] —— ——
| | [€] conceptDictionary [0.*] conceptDictionary_t
[e] assetRef [1.1] reference_t I—
[e] submodelRefs [0.1] submodelRefs_t i security_t
(=l views (0.1] views t i accessControlPalicyPoints [1.1] accessContralPolicyPoints_t
[¢] conceptDictionaries [0.1] conceptDictionaries_t I— certificates [0.1] certificates t
(el security [0.1] security t T requ'redCen'f'qa;eExtens'ons [0.1] i

5.4.8 ConceptDescriptions and EmbeddedDataSpecifications Mapping

As described above, the definition of a concept comprises of an according reference and a content, which is realized by a
data specification.

104 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 60 Concept description in XML in general

idShort_t|

; langStringSet_t

‘ [e] langString [1.#] langString_t ,;,

conceptDescription_t ‘
| reference_t

—_—
[e] idShort [1.1] idShort_t =

N w—[e] keys keys_t
[2] category [0.1] string

1
= [e] description [0.1] langStringSet_t W i T
[e] parent [0.1] reference_t I idType (idTypeType)
[e] identification [1.1] identification_t]
[e] administration [0.1] administration_t % administration_t
[21}—{ee [e] embeddedDataSpecification [0.*] embeddedDataSpecification_t I [version [0.1] string
[&] isCaseOf [0.%] reference_t 1 @ revision [0.1] string

embeddedDataSpecification_t

[e] dataSpecificationContent [0.1] dataSpecificationContent_t

Lo

[e] dataSpecification [0.1] reference_t

The data specification can be e.g. along of an IEC 61360 property:

Figure 61 Data specification via IEC 61360 property attributes

dataSpecificationContent_t

embeddedDataSpecification_t

t+—[e] dataSpecificationlEC61360 dataSpecificationlEC61630 t %

reference_t

- [e] keys keys_t v

[e] dataSpecificationContent [0.1] dataSpecificationContent_t

[e] dataSpecification [0.1] reference_t

Full XSD and example XML can be found in Annex C.

5.4.9 Attribute Based Access Control Mapping

As described above, the definition of a concept comprises of an according reference and a content, which is realized by a
data specification.

Figure 62 Attribute Based Access Control Model Mapping — Security Model

accessControlPolicyPoints_t

certificates_t

[e] policyAdministrationPoint [1..1] policyAdministrationPoint_t *i«

[e] policyDecisionPoint [1.1] policyDecisionPoint_t *lr

B | [e] policyEnforcementPoint ~ [1.1] policyEnforcementPoint_t *lr

[e] policylnformationPoints 0.1 olicylnformationPoints_t +

[2] accessControlPolicyPoints [1.1] accessControlPolicyPoints_t i policy [0.1]_policy - |
[&] certificates [0.1] certificates_t i
1

[el requiredCertificateExtensions [0.1] references_t

[e] certificate [1.*] certificate_t %

references_t

N 1
reference [0.%] reference_t ¥

Mappings to Data Formats to Share 14.0-Compliant Information | 105

Figure 63 Attribute Based Access Control Model Mapping — Policy Points Model

policyAdministrationPoint_t

[el localAccessControl [0.1] accessControl_t ¥

[e] externalAccessControl [0.1] boolean

accessControlPolicyPoints_t policyDecisionPoint_t

[e] policyAdministrationPoint [1.1] policyAdministrationPoint_t
[e] policyDecisionPoint [1.1] policyDecisionPoint_t
[e] policyEnforcementPoint [1.1] policyEnforcementPoint_t

[e] policylnformationPoints [0.1] policylnformationPoints_t

[e] externalPolicyDecisionPoint [1.1] boolean

policyEnforcementPoint_t

[e] externalPolicyEnforcementPoint [1.1] boolean

policylnformationPoints_t

[e] externallnformationPoints [1.1] boolean

[el internallnformationPoints [0.*] internallnformationPoint_t [+

Figure 64 Attribute Based Access Control Model Mapping — Policy Information Points

T - P— T g
(] policylnformationPoints_t | internallnformationPaints | | submodelRefs_t | | reference_t

[e] externalinformationPoints [1.1] boolean ‘ (&l internalinformationPoint [0.*] submodelRefs_t L ‘ submodelRef [0.*] reference_t

el internalinformationPoints [0.1] internallnformationPoints

I % ‘ keys keys t i

5.5JSON

5.5.1 General

In the following clauses an overview of the main concepts of the AssetAdministration Shell JSON serialization is
presented. For import and export scenarios the metamodel of an AssetAdministration Shell needs to be serialized. A
serialization format is JSON? (JavaScript Object Notation). The information is divided in three parts. The first part
discusses the rules, in the second part are examples for some specific rules and in the third part the schema and a complete
example is shown in the annex.

5.5.2 Rules

The main concepts of the JSON serialization are explained by the following rules.

1)

)

©)

4)

()

If present, names are taken from the information model.

For comprehensibility reasons the JSON key names should be the same as the representing Element in the
metamodel.

Each Referable, Qualifier and Formula have an additional attribute “modelType” with the name of the
corresponding object class as value

This rule is needed for deserialization reasons.

All identifiables have an aggregation on root level.

The identifiables are AssetAdministrationShells, Assets, Submodels and ConceptDescriptions. To reduce
redundancy instances, they are located exclusively in the top-level aggregation.

Identifiables which are not in the top-level aggregations are only references to the corresponding instances in
one of the top-level aggregations.

This rule completes the concept of rule 3. There should be no redundant identifiable in the serialized
metamodel.

Data Specification Templates are directly added to the Concept Description.

Additionally, a new element EmbeddedDataSpecification is introduced that has two attributes: one for the
global reference to the data specification identifier and one for the content of the data specification.

25 gee: https://tools.ietf.org/html/rfc8259 or https://www.ecma-international.org/publications/standards/Ecma-404.htm

https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications/standards/Ecma-404.htm

106 | Mappings to Data Formats to Share 14.0-Compliant Information

5.5.3 Example for Top-Level Structures

One serialization describes one Asset Administration Shell environment, that is, a collection of Administration Shells.
The root element of the Asset Administration Shell environment has 4 aggregations. For each identifiable class, one
aggregation is provided, as required by rule 3.

Figure 65 Top level structure of an AssetAdministration Shell environment mapped to JSSON

Asset Concept

Administration Submodels

Shells Descriptions

Source: Plattform Industrie 4.0

The resulting JSON is the minimal valid JSON:

Table 13 Minimal JSON for top level structure

{

"assetAdministrationShells™:[],
"assets":[],
"submodels":[],

"conceptDescriptions”:[]

5.5.4 Examples for References to lIdentifiables

As required by rule 4, Identifiables are only allowed to be located in the top-level aggregations. In deeper parts of the
structure only References to the corresponding Identifiable must be taken.

In the Asset Administration Shell AAS1, the submodel S1 is only a Reference to the Submodel S1 instance in the top
level Submodels aggregation.

Mappings to Data Formats to Share 14.0-Compliant Information | 107

Figure 66 Submodel reference in AssetAdministrationShell for JISON

Asset
Administration
Shells

Submodels

Submodels

Concept
Descriptions

Source: Plattform Industrie 4.0

This results in the following exemplary JSON:

Table 14 Exemplary minimal JSON for References

{

"assetAdministrationShells":[
{
"modelType": "AssetAdministrationShell",
"submodels":[
{
"keys":[
{

"idType":"IRI",
"local":true,
"type":"Submodel”,

"value": "http://env.com/submodels/S1"

}
I

"assets":[],

"submodels":[
{

"modelType":"Submodel”,

"identification™:{
"id": "http://env.com/submodels/S1",
"idType":"IRI"

}1

"idShort":"S1",

"submodelElements":[],

}
1

""conceptDescriptions™:[]

108 | Mappings to Data Formats to Share 14.0-Compliant Information

5.5.5 Examples for ReferenceElement

A ReferenceElement has a Reference as value. This Reference has an aggregation of keys which represents a key chain.
The resolved key chain points to an element. In this example the ReferenceElement’s value points to a property of another
submodel in another Asset Administration Shell environment. The first key is a global key with “local”-attribute set to
false, i.e. the reference is not part of the own environment. The second key is a model key which is used to define the
corresponding property in the other environment by its IdShort. It is best practice to use the shortest key chain if there are
multiple options.

Figure 67 Usage of ReferenceElement in JSON

Submodels

Submodels

Reference
Element

Source: Plattform Industrie 4.0

This results in an exemplary JSON as such:

Table 15 Exemplary ReferenceElement in JSON

{
"keys":[
{
"idType":"IRI",
"local":false,
"type":"Submodel”,
"value":"http://admin-shell.io/submodels/Temperature"
b

{
"idType™:"IdShort",

"local":true,
"type":"Property",

"value":"NMax"

Mappings to Data Formats to Share 14.0-Compliant Information | 109

5.5.6 Examples for GlobalReference

Sometimes it is useful to refer to another standard or something that is not provided by the own Asset Administration
Shell environment. In this example the semantics of a Property refers to eCl@ss.

Figure 68 Usage of GlobalReference in JSON

Submodels

External
.| Destination
" e.g.
eCl@ss

Source: Plattform Industrie 4.0

This results in an exemplary JSON as such:

Table 16 Exemplary GlobalReference in JSON

{
"keys":[
{
"idType™:"IRDI",
"local": false,
"type":"GlobalReference",
"value":"0173-1#02-AAC962#006"

5.5.7 Example for a kind = "Template'" Reference

A semantic description can either be something external or an instance with kind ="Template”. In this example the
Property P2 uses P1 as a template. P1 has kind =”Template” and P2 kind ="Instance”.

Note: typically, templates are assumed to be specified in another Asset Administration Shell as the instances. Here,
the depicted situation is simplified for layout reasons.

110 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 69 Exemplary type Reference in JSON

Property

Property
Kind="Template” Kind="Instance”

|dShort="P1" —rDom .
s Source: Plattform Industrie 4.0

This results in an exemplary JSON as such:

Table 17 Exemplary type Reference in JSON

{
"keys":[
{
"idType":"IRI",
"local":true,
"type":"Submodel",
"value":"http://aasenvl.com/submodel/S1"
b
{
"idType":"1dShort",

"local":true,
"type":"Property",

"value":"P1"

Mappings to Data Formats to Share 14.0-Compliant Information | 111
5.6 RDF

5.6.1 General

The Resource Description Framework (RDF) [44] is recommended standard of the W3C to unambiguously model and
present semantic data. RDF documents are structured in the form of triples, consisting of subjects, relations and objects.
The resulting model is often interpreted as a graph, with the subject and object elements as the nodes and the relations as
the graph edges.

RDF is closely related to Web standards, illustrated by the fact that all elements are encoded using (HTTP-)URIs. As a
common practice, the provision of additional information at the referenced location of an RDF entity directly allows the
interlinking of entities?® based on the Web. This process, the following of links in order to discover related information,
is called dereferencing a resource and is supported by any browser or web client. Connecting distributed data sources
through the Web in the described manner is referenced by the term Linked Data. Connecting the available resources and
capabilities of Linked Data with the expressiveness of the Asset Shell is one motivation for the RDF serialization.

In addition, RDF is the basis of a wide range of logical inference and reasoning techniques. VVocabularies like RDF
Schema (RDFS) and the Web Ontology Language (OWL) combine the graph-based syntax of RDF with formal
definitions and axioms. This allows automated reasoners to understand the relation between entities to some extent and
draw conclusions.

Combining both features, the RDF mapping of the Asset Administration Shell can provide the basis for complex queries
and requests. SPARQL, the standard query language for the Semantic Web, can combine reasoning features with the
integration of external data sources. In order to benefit of these abilities, the AAS requires a clear scheme of its RDF
representation. In the following, the necessary transformation rules are presented, followed by an illustration of relevant
parts of the scheme and an example. The complete data model together with the RDF scheme are listed in Annex G.

5.6.2 Rules

(1) The default serialization format is Turtle.
Several, equivalent serializations exist for RDF. Among them, the Turtle syntax is regarded as the most
appropriate compromise between readability and tool-support. Other formats (RDF/XML, JSON-LD, N3, etc.)
can be used without any loss of information.

(2) Shape Graphs represent the validation rules.
The data model itself is an RDF ontology. As RDF itself is following the open-world-assumption, SHACL
[38] constraints are necessary in order to enable schema validation. Similarly to XSD for XML, the SHACL
format can be used to describe contraints (or shapes) of RDF graphs.

(3) Every entity is encoded as either an IRI or a Literal.
RDF uses IRIs for both entities and relations. If no IRI is predefined, a globally unique IRI is generated.
Primitive values are encoded as Typed Literals.

(4) Entities are enhanced with well-known RDF attributes.
Interoperability of concepts and attributes is the main advantage of the RDF mapping. Applying common
attributes (rdf:type, rdfs:label, and rdfs:comment) enables the usage of standard tools and interfaces.

(5) Repeating elements are described once and then linked using their IRI identifier.
If a distinct element appears more than one time in the original model but in a different context, for instance in
more than one submodel, the RDF entity represents the combination of all attributes.

(6) Keys must have an index attribute.
Keys of a Reference have a defined order, however RDF is explicitly set-based. The index attribute encodes
the position in the original sequence. Consequently, Keys belonging to one Reference must have unique
numbers in the range [0..keyCount], ascending from 0. If only one Key is supplied, the index attribute can also
be skipped, implying a default value of ‘0’.

26 Note: entity as a generic term and entity as a specific submodel element subtype need tobe distinugished.

112 | Mappings to Data Formats to Share 14.0-Compliant Information

(7) Multilanguage Strings are split into distinct language strings.
Obijects are expected to contain a singular information entity, and the currently available tools would not
recognize the different pattern used.

5.6.3 Example Overview

RDEF is often regarded as a graph model, as it provides the flexibility to interlink entities at any stage. In the following,
the running example is originally provided in Turtle but accompanied with visualizations of the represented graph.
Attributes referencing non-literal values are shown as directed links while Literal values are drawn together with the
corresponding entity itself. In order to increase readability, the namespace declarating sections are omitted. The complete
example with all namespaces can be found in Annex G.

The instances of the core classes, the AssetAdministrationShell, the Asset, Submodels, and ConceptDescriptions are
shown in Figure 70. A short snippet of the AssetAdministrationShell is also provided in Table 18. The RDF identifiers
are visualized in a condensed format in the figure but represent complete URIs, as displayed in Table 18.0ne can see the
additionally inserted triples for rdf: type (1), rdfs: label (2), and rdfs:comment (3) as determined by Rule 4.
The first attribute states the instance’ class. The second provides its commonly used name, for instance based on the
idShort attribute. rdfs:comment supplies a short description about the regarded entity, based on the description value.
The generally available tools, for instance the open source tool Protégé, interpret these attributes and display the correct
class hierarchy, render the elements with their labels or supply short explanations based on the comments.

Figure 70 Simplified graph of the core classes in the example

S——

type

AAS9175_T0

submodelElement

ason
we
T s]
e
camnen

properiyCategory

ASSET_INSTA..

Table 18 Turtle excerpt of an AssetAdministrationShell class

<http://customer.com/aas/9175_ 7013 7091 9168>

rdf:type aas: AssetAdministrationShell ; @

aas:idShort "ExampleMotor"~xsd:string ;

rdfs:label "ExampleMotor""xsd:string ; 2

aas:description "A very short description of the AAS instance."@en ;

rdfs:comment "A very short description of the AAS instance."xsd:string; (3)

aas:asset [... aas:value <http://customer.com/assetssf KHBVZJISQKIY>; ...];

aas:submodel [... aas:value <http://i40.customer.com/type/1/1/F13E8576F6488342> ; ...];
aas:submodel [... aas:value <http://i40.customer.com/type/1/1/7A7104BDAB57E184> ; ...];
aas:submodel [... aas:value <http://i40.customer.com/instance/1/1/AC69B1CB44F07935>; ...];
aas:submodel [... aas:value <http://i40.customer.com/type/1/1/1A7B62B529F19152> ; ...];
aas:identification <http://customer.com/aas/9175_7013_7091 9168> ;

aas:category "CONSTANT"Mxsd:string .

Mappings to Data Formats to Share 14.0-Compliant Information | 113

5.6.4 Example Schema Shape

The Shapes Constraint Language (SHACL) [38] introduces a W3C recommendation for validation mechanisms on RDF
graphs. The definition of required attributes, cardinality of relations or datatype restrictions in the form of shapes (see
Table 19 for an example shape) is an important aspect to enable data quality assurance in any productive system. Some
tools are already created to assist the creation of SHACL shapes, e.g. a Protégé plugin and as a part of TopBraid Composer.
As SHACL shapes are also defined in RDF, they share the same format and thereby reduce the required technology stack
and reduces the amount of necessary libraries.

Table 19: A SHACL Shape for the AssetAdministrationShell and its asset attribute

aas:AssetAdministrationShellShape a sh:NodeShape ;

sh:targetClass aas:AssetAdministrationShell ;
rdfs:subClassOf aas:HasDataSpecificationShape ;
rdfs:subClassOf aas:ldentifiableShape ;
sh:property [

a sh:PropertyShape ;

sh:path aas:asset ;

sh:class aas:Reference ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:message "Exactly one <i>asset</i> attribute having an <i>Reference</i> entity is required."xsd:string ;

sh:name "asset"\xsd:string ;

1; ...

5.6.5 IRl Mapping

Every enitiy in RDF is either a Resource or a Literal. While Literals present data values, like strings, numbers or any
sequence of characters, Resources represent the nodes and edges in the data graph. As Resources must be identified
through IRIs (preferable even URISs), the creation of suitable IRIs is fundamental for the mapping. Whenever resources
of an AAS are already identified through IRIs (see also Section 4.4.6), these IRIs/URIs are also utilized in the RDF model.
However, in cases where no IRI is given, a defined procedure has to be followed. The following decision steps determine
the necessary steps in order to create an unambiguous IRI for every element of the AAS.

These steps are only executed once per distinct element. If elements occur more than one time, always the same IRI
identifier has to be used. This is especially relevant for the fallback solution (2b and 3) where the initial character sequence
must be reused. Different elements must not get the same sequence under any circumstances.

1. If the element has IdentifierType = "IRI":
Use the value of the identification attribute, else:
2. If the enclosing AAS has an IdentifierType = "IRI":
a. If the element inherits from Referable:
Apply the template: <AAS identification URI>/<path/to/element>/<idShort>, where the path to
the element is the concatenation of the respective idShorts separated by slashes, else:
b. Apply the template: <AAS identification URI>/<path/to/element>/<random characters>
3. Use randomized character sequence:
<scheme>://<random characters>

5.6.6 Example Mapping

Several mapping languages have been created in order to transform structured data into RDF graphs. Most prominently,
R2RML (relational data only) and RML (relational data, XML, JSON, etc.) are used to specify the necessary mappings.

114 | Mappings to Data Formats to Share 14.0-Compliant Information

A RML mapping can be used to transform a given Asset Administration Shell from its XML or JSON serialization to any
potential RDF serialization. The snippet in Table 20 illustrates an RML TriplesMap used to convert the XML example
from Annex E. The AssetAdministrationShell elements are iterated (rml:1logicalSource) and, among others, all
relations to referenced Submodels are extracted (rr:predicateObjectMap).

Table 20 RML TriplesMap snippet for parsing XML to RDF

_:AssetAdministrationShellMap rdf:type rr:TriplesMap ;
rml:logicalSource [
rml:source "[...]/customer_com_aas 9175 7013 7091 9168.aas.xml" ;
rml:referenceFormulation gl:XPath ;
rml:iterator "//*[local-name()="assetAdministrationShell]"
I
rr:subjectMap [
rml:reference "identification” ;
rr:class aas:AssetAdministrationShell
I
rr:predicateObjectMap [
rr:predicate aas:submodel ;
rr:objectMap [
rml:reference "submodelRefs/submodelRef/keys/key" ;
rritermType rr:URI
]
1; ...

5.6.7 Example Asset Administration Shell with References

RDF entities usually do not have an explicit order. That implies that a reordering of elements is allowed. As for instance
references to Submodels do not depend on their sequence, this behaviour is fine. However, especially Key elements do
have a certain sequence and keeping that is important. Still, the available set of tools does not guarantee to preserve their
original order. Consequently, a new attribute (aas:index) needs to be introduced. Figure 71 explains the regarded
situation, where an Asset Administration Shell expresses its relation with an Asset. Table 21 illustrates the use of
aas:index. If more than one Key appears, the index attribute must always be used. Furthermore, no two index values
must have the same integer value as otherwise the order information is lost. The first index is denoted with 0 in ascending
order.

Mappings to Data Formats to Share 14.0-Compliant Information | 115

Figure 71 Graph snippet of an AssetAdministrationShell, linked to an Asset through a Reference and Key

Reference

AssetAdministr...

_:AssetKey
_:AssetRef -
C =

[ASSET_IDEN.A.] ERI_IDENTIFIE..]

Table 21 Exemplary AssetAdministrationShell stating its identification and containing one Asset

<http://customer.com/aas/9175_ 7013 7091 9168> rdf:type aas:AssetAdministrationShell ;
aas:identification <http://customer.com/aas/9175 7013 7091 9168> ;
aas:asset [
a aas:Reference ;
aas:key [
a aas:Key ;
aas:index "0""Mxsd:integer ;
aas:type aas:ASSET_IDENTIFIABLE_ELEMENT ;
aas:local "true"~xsd:boolean ;
aas:value <http://customer.com/assets/KHBVZJSQKIY> ;
aas:idType aas:IRI_IDENTIFIER_TYPE ;
I
1;....

<http://customer.com/assets/ KHBVZISQKIY> rdf:type aas: Asset ;
aas:identification <http://customer.com/assets/KHBVZJSQKIY> ;

5.6.8 Example Asset

The Asset is the objective of the whole Asset Administration Shell. Figure 72shows the graph of the RDF encoded
ServoDCMotor in Table 22. The motor, identified through its unique URI, has a Submodel providing all necessary
information describing its identity.

116 | Mappings to Data Formats to Share 14.0-Compliant Information

Submodel
Submodel:F13...

Figure 72 Asset and its identifying Submodel

ty

pe

type
st s |
o

assetldentificationModel _:SubmodelRe...

assetKind | identification

[ASSET_INSTA.] [Asset:KHBVZJ.] ﬁR_DENTIFIE] [SUBMODEL_I...]

Table 22 RDF Asset in Turtle

<http://customer.com/assetssy KHBVZJSQKIY> rdf:type aas:Asset ;
aas:idShort "ServoDCMotor" Mxsd:string ;
rdfs:label "ServoDCMotor"~xsd:string ;
aas:identification> <http://customer.com/assets/KHBVZISQKIY>.
aas:assetldentificationModel [
rdf:type aas:Reference ;
aas:key [
rdf:type aas:Key ;
aas:.index "0"Mxsd:integer ;
aas:type aas:SUBMODEL_IDENTIFIABLE_ELEMENT ;
aas:local "true"~xsd:boolean ;
aas:value <http://i40.customer.com/type/1/1/F13E8576F6488342> ;
aas:idType aas:IRI_IDENTIFIER_TYPE .
I
aas:assetKind aas:ASSET_INSTANCE .

5.6.9 Example Submodel with Property

Submodels contain the relevant information for a use case. Figure 73 shows the Identification Submodel with the Property
containing the manufacturer of the asset. In the RDF terminology, every relation actually is called a property. In the data
model of the Asset Administration Shell however, a Property is a defined sub class of the SubmodelElement. The
distinction is made through the namespace: rdf:Property for every relation, aas:Property for certain

SubmodelElements (see Table 23).

Mappings to Data Formats to Share 14.0-Compliant Information | 117

Figure 73 Graph of the relations between a Submodel (F13E8576F6488342) and a Property (Manufacturer)

Submodel Property

type
Manufacturer
F13E8576F64.

-
label IManufacturer
e 0| S s |

identfication g P== Y oot propertyCategory CONSTANT
cescrpton
e
L le=n

semanticld

submodelElement

ProductDesigner
SerialNumber

Table 23 Exemplary Submodel stating its semantic ID and containing one SubmodelElement

<http://i40.customer.com/type/1/1/F13E8576F6488342> rdf:type aas:Submodel ;
aas:idShort "Identification"~xsd:string ;
aas:semanticld [
a aas:Reference ;
aas:key [
a aas:Key ;
aas:index "0"~Mxsd:integer ;
aas:type aas:GLOBAL_REFERENCE_KEY_ELEMENT ;
aas:local "false""xsd:boolean ;
aas:value "0173-1#01-ADN198#009"xsd:string ;
aas:idType aas:IRDI_IDENTIFIER_TYPE ;
I
]l ...
aas:identification <http://i40.customer.com/type/1/1/F13E8576F6488342> ;

aas:submodelElement [
rdf:type aas:Property ;
rdf:subject <http://i40.customer.com/type/1/1/F13E8576F6488342/Manufacturer> ;
aas:idShort "Manufacturer"~xsd:string ; ...
aas:semanticld [

a aas:Reference ;

118 | Mappings to Data Formats to Share 14.0-Compliant Information

aas:key [
a aas:Key ;
aas:index "0""xsd:integer ;
aas:type aas:GLOBAL_REFERENCE_KEY ELEMENT ;
aas:local "false"~xsd:boolean ;
aas:value "0173-1#02-AA0677#002"xsd:string ;
aas:idType aas:IRDI_IDENTIFIER_TYPE ;

5.6.10 Example MultiLanguage String

The Identification Submodel in Table 24 has two descriptions, one in English and one in German. RDF proposes the
usage of LangStrings, typed Literals with a language tag. Table 25 illustrates, how Rule 7 leads to different object values.

Table 24 Exemplary MultiLanguage description of a Submodel

<aas:submodel>
<aas:idShort>Identification</aas:idShort>
<aas:description>
<aas:langString lang="EN">Identification from Manufacturer</aas:langString>
<aas:langString lang="DE">Hersteller-ldentifikation</aas:langString>

</aas:description>

</aas:submodel>

Table 25 RDF serialization of attribute values in different languages

<http://i40.customer.com/type/1/1/F13E8576F6488342>
aas:description "ldentification from Manufacturer"@en ;

aas:description "Hersteller-ldentifikation"@de .

5.6.11 Example Concept Description

A Concept Description defines the meaning of the entities used in the Asset Administration Shells, Assets, and
Submodels. Table 26Table 26 illustrates a description for the organization name of a constant. The core building blocks
of the example are the reference to the data specification key (1), the actual content conforming to IEC 61360 (2), and the
reference to the actual identifier in the previously used elements (3).

Table 26 ConceptDescription Example in RDF

<http://www.vdi2770.com/blattl/Entwurf/Okt18/cd/Organization/OrganizationOfficialName>
rdf:type aas:ConceptDescription ;
aas:idShort "OrganizationName"~"xsd:string ;

rdfs:label "OrganizationName"~"xsd:string ;

Mappings to Data Formats to Share 14.0-Compliant Information | 119

aas:category "CONSTANT"Mxsd:string ;

aas:identification <http://www.vdi2770.com/blattl/Entwurf/Okt18/cd/Organiz
ation/OrganizationOfficialName> ;

aas:hasDataSpecification [Q
rdf:type aas:Reference ;
aas:key [
a aas:Key ;
aas:index "0"Mxsd:integer ;
aas:type aas:GLOBAL_REFERENCE_KEY_ELEMENT ;
aas:local "false"~xsd:boolean ;

aas:value <http://admin-shell.io/DataSpecificationTemplates/DataSp
ecificationlEC61360> ;

aas:idType aas:IRI_IDENTIFIER_TYPE ;
I
I
aas:content [(2)
rdf:type aas:DataSpecificationlEC61360 ;
aas:preferredName "offizieller Name der Organisation"@de ;
aas:preferredName "official name of the organization"@en ;
aas:shortName "OrganizationOfficialName" @en ;
aas:datatype "STRING"Mxsd:string ;
aas:definition "Der offizielle Name der Organisation."@de ;
I
aas:isCaseOf [3)
rdf:type aas:Reference ;
aas:key [
a aas:Key ;
aas:index "0"~xsd:integer ;
aas:type aas: CONCEPT_DESCRIPTION_IDENTIFIABLE_ELEMENT ;
aas:local "true"xsd:boolean ;
aas:value "0173-1#02-AA0677#002" xsd:string ;
aas:idType aas:IRDI_IDENTIFIER_TYPE ;
I
I

120 | Mappings to Data Formats to Share 14.0-Compliant Information
5.70PC UA

5.7.1 General

The works of the mapping to the OPC Unified Architecture are currently carried out in a joint working group?” between
OPC Foundation, ZVEI and VDMA. In the following the main aspects for the mapping are described. In [39] the details
of the companion specification can be found.

Note: Boxes in green (like “HasDictionaryEntry”) are denoting elements (object types, reference types etc.) that are
predefined in the OPC UA Specifications.

Figure 74 Overview OPC UA Information Model for AAS

AASAssetAdministrationShell Type

semanticld —
DictionaryEntryType::
ARSI <DictionaryEntry>

Hasinterface—» |AASIdentifiable Type

Hasinterface— |AASIdentifiable Type

AASReferenceType::
<DataSpecification>

AASReferenceType::

<DataSpecification>
AASAssetType::
Asset
PropertyType::
AASSubmodelType:: e Kizdyp
<Submodel>
AASQualifierType::

AASReferenceType:: L ansreference AASSubmodelType:: <Qualifier>
<SubmodelReference> <Submodel>

AASSubmodelElementType::
<SubmodelElement>

AASConceptDictionary Type::
<ConceptDictionary>
E—
AASViewType::
<View>
AASReferenceType:: AnsReference bl AASAssetAdministrationShellType::
DerivedFrom <DerivedFrom> semanticld DictionaryEntryType::
AASSubmodelElementType <DictionaryEntry>
HaslInterface
IAASReferableType
AASAssetType
‘ AASReferenceType::
. <DataSpecification>
Hasinterface—» |AASIdentifiable Type
PropertyType::
Kind
AASReferenceType::
<DataSpecification>
AASQualifierType::
PropertyType:: <Qualifier>
AssetKind
AASReferenceType:: |) AASSubmodelType::
AssetidentificationModel | """ <Submodel>
AASReferenceType:: |, oo AASSubmodelType::
BillOfMaterial <Submodel>

27 see: https://opcfoundation.org/collaboration/i4aas/

https://opcfoundation.org/collaboration/i4aas/

Mappings to Data Formats to Share 14.0-Compliant Information | 121

OPC UA

n

Figure 75 Submodel Element Subtypes

<9sSY>

:adf 1 19ssYSYY

asussalousyy

18ssy
adf | 2ouRIaeNSYY

adfLAnuz
adA Auadosd

<alqeiojod>

::adAposlgoeseg

<usWa|3ePowgns>
s:edALuBWwa|3IBpowansSyy

dALuanzason j

Wwangsmesaua9.

sy

aneA

:adA 20uRIBjRUSYY

<a|qeiajeY>

:adA poalqoases

<alqeiRRY> | swasspnsy

adA oslqosses

puooes
sadALe0URIRIRESYY

swwpysey
1814

2041 20UBIRIBUSYY

a4
-adk 18]

adALawn

oA Auadosd

BouBISBYAIY
adA Auadosd

:adA o)y

adkLaneA
80K 1 Auadold

xeW
80K 1 Auadold

un
ek Auadoig

<Knuakreuomia>

sadA1Anuakreuonoiq

:adA 1B FPPOWIANSSYY

<Anuzkreuondia>

:adA1Anuzkreuondia

Ssusiapoysyy

¥

sy

adf |eBueySYY

pieneA
adf190ualajeuS VY

pIaneA
adA | 20uIajeuSYY
SuBLNBAINAINO
00K 1 Auadold

adALanfen
SwawnBayindu; adA1Auadosd

::adA) Auadoid

anfeA

34 s:adA1Auadoid

7 adALAnuasvy 7

7 8dAIUBAISYY

7 sdALaIds VY

anfen
“adA1Auadosd

adA 1 AuadoigabenbueTnnnsyy

adALqoigswy 7 adA uoperadosyy

adALAiqedeosyy 7

7 adA 1 Auadoldsyy

<:adA LuBWa|3|2powansSSYY

B
sadk 1 Auadold

adALuoslj0D
WBLIBIIRPOLIANSPRIAPIOSYY

<IuBWa3Bpowgns>

‘sereolidnamoly
:adA) Auadoid

adAuonoaiod
WBWR|[BPOWaNSSYY

<sayend>
:adA Liayendsyy

puBy
-edk1Aedod

sepusey

adALa|qeiRRHSYVI

<Anuakreuondig>

adALAnuzkreuondig

adA LuswalFIEPOWANSSYY

pPauewas

122 | Mappings to Data Formats to Share 14.0-Compliant Information

5.7.2 Rules

The rules for mapping of the AAS information model to OPC UA information model are given in the following. In
subsequent clauses examples for the rules are given.

General Rules:

For all class elements in AAS an object type with the same name + suffix “Type” + prefix “AAS” is added.
Example: AASAssetType for Asset, AASSubmodelElementType for SubmodelElement and AASQualifierType for
Qualifier. These Types are derived from BaseObjectType. Exception: ConceptDescriptions und Referables see
below.

For all types in AAS that can not directly be mapped to OPC UA primitive types a data type is created with the
same name + suffix “DataType” + prefix “AAS”. Example: AASAssetKindDataType for AssetKind. Exception:
LangStringSet is mapped to the predefined OPC type “LocalizedText”.

Attributes of classes in AAS that have a simple data type are mapped to “HasProperty” references within the
object type. The BrowseName corresponds to the name in the AAS UML model but is starting with Capital
Letter. Example: AASAdministrativelnformationType has property Version with data type “String”.

The cardinality of an association or aggregation is specified via OPC Modelling rules. The OPC modelling rule
“Optional” is used if the cardinality is Zero or 1. The OPC modelling rule “Mandatory” is used if the cardinality
is One. The OPC Modelling rule “OptionalPlaceholder” is used if the cardinality is zero, one or more than one
element. The OPC Modelling rule “MandatoryPlaceholder” ” is used if the cardinality is one or more than one
element.

Aggregation and composition attributes of classes in AAS are mapped to “HasComponent” References within
the object type.

In case of cardinality O .. 1 or 1 the BrowseName corresponds to the name in the AAS UML model but is
starting with Capital Letter. Example: Objects of type “AASAssetType” have a component with browse name
“AssetldentificationModel”.

In case of cardinality > 0 the BrowseName corresponds to the idShort in the AAS UML model. Example:
AASSubmodelType has OPC components with OPC TypeDefinition AASSubmodelElementType. A submodel
element may have the idShort “MaxRotationSpeed”. Then the browse names of the component ist
“MaxRotationSpeed” as well.

Since OPC UA does not support multiple inheritance abstract classes (like e.g. “Qualifiable” or “Identifiable™)
are not modelled via subtype reference in OPC UA. The corresponding attributes, aggregations and compositions
are modelled as part of the inheriting class. For details see rules below.

Rules for SubmodelElements:

10.

Specific for the Blob SubmodelElement type (AASBlobType) the predefined OPC type definition “FileType” is
used for the value. References of type “FileType” are components of the object type. The browser name is not
“value” but “File”. The mime type is part of the OPC FileType and therefore not added. In contrast to the OPC
FileType mime type is mandatory to be filled.

Specific for the File SubmodelElement type (AASFileType) the value attribute is mapped to an OPC property
with BrowseName “FileReference”. Additionally an object of type “FileType” with browse name “File” can be
added similar as for the Blob. Since this is optional the mime type is modelled as OPC property. In case both are
present, then the mime type needs to be the same.

SubmodelElementCollection can be either ordered or not ordered. In case of an ordered collection
“SubmodelElementCollection” is realized as AASOrderedSubmodelElementCollectionType and the relationship
between collection and submodel elements is realized via the predefined OPC UA “HasOrderedComponent”
reference type. Otherwise a AASSubmodelElementCollectionType is used.

For Operations first an AASOperationType is defined but then the OPC “Method” is used for describing the
operation. The name of the method is “Operation”.

Hint: The OPC UA Specification Amendment 3: Method Metadata allows to add meta information to individual
arguments (HasArgumentDescription). This is used to realize semanticld by using the OPC reference type
“HasDictionaryEntry”.

Mappings to Data Formats to Share 14.0-Compliant Information | 123

11. For AAS references as used in ReferenceElement of RelationshipElement see rule for referencing.
12. For AAS submodel elements “Event” the object type “AASEventType” references an OPC UA event via the
reference type “GenerateEvent”.

Rules for Referables and Identifiables:

13. For Referable and Identifiable separate OPC object types are defined that are referenced from the corresponding
object types representing the concrete referables and identifiables via the OPC “HaslInterface” Reference type.
The naming convention for this is as follows “TAAS<AAS UML class name>". Example: |AASIdentifiableType

14. In case of referenced referables with modelling rule “OptionalPlaceholder” or “MandatoryPlaceholder” the
attribute idShort of AAS Referables is represented by the browse name of an element. Since there are cases like
for AssetAdministrationShell/asset where the browse name is “Asset” but the asset has an idShort as well,
idShort is modelled additionally. In cases with no prefined browse name the browse name and the idShort should
be identicial.

15. The parent attribute of Referables is not explicitly modelled because OPC UA supports native navigation.

16. In case of referenced referables with modelling rule “Optional” or “Mandatory” the browse name is identical to
the AAS attribute name and the display name shall be identical to the idShort.

Rules for Qualifiables:

17. Qualifier of an element are modelled with OPC UA HasComponent reference type. Since qualifier are not
referable they do not have a browse name that corresponds to an AAS attribute. Instead the name should be
generated as follows: qualifier:<value of AAS:Qualifier/type>=<value of Qualifier/value>.

Rules for semanticld and Concept Descriptions:

18. A concept description is inheriting from the predefined OPC “IrdiDictionaryEntry” or “UriDictionaryEntry”.
This is why there are both object types: “AASIrdiConceptDescriptionType” or “AASIriConceptDescription-
Type” and not only one like for the other AAS classes. Additionally for idType = Custom a new Type
“AASCustomConceptDescriptionType” is created inheriting directly from “DictionaryEntryType”.

19. Concept descriptions are added to a folder on the server side. The top-level folder shall be named “Dictionaries”.
Below additional subfolders can be created.

20. semanticld is modelled by using the predefined OPC reference type “HasDictionaryEntry” and is either
referencing an object of type “AASIrdiConceptDescriptionType” or of type “AASUriConceptDescriptionType”
or of type “AASCustomConceptDescriptionType”.

21. Additionally a concept description has at least one Add-In to allow the usage of the IEC61360 data specification
template (see rules for data specifications).

Rules for Data Specifications:

22. Concrete data specifications are inheriting from the AAS object type “AASDataSpecificationType”.

23. There is no need in OPC to distinguish between the data specification properties and the data specification
content defining the properties that shall be added to the object type that uses the data specification. The AAS
attributes of DataSpecification are modelled as OPC UA properties or components (rules as above) of the
AASDataSpecificationType but are not instantiated. This is always the case in OPC UA if there are no modelling
rules attached to a property or component.

24. The concept of embedded data specifications is used. The element that is using the data specification uses the
OPC reference type “HasAddIn”. This Add-In uses pairs of elements: one property being the global external
reference to a data specification, the other one the data specification content.

124 | Mappings to Data Formats to Share 14.0-Compliant Information

Rules for Referencing:

25. For AAS references as used in ReferenceElement of RelationshipElement a new non-hierarchial Reference Type
“AASReference” is introduced. The OPC Reference Type “HasComponent” is not directly used to reference an
element because OPC references can only reference to elements within its own name space. For AAS, however,
also global external references are possible — to elements in other AAS on other OPC Servers or to entities
completely outside the scope of AAS. The object with type “AASReferenceType” is holding the unique key chain
to the referenced elements and optionally can reference the “real” element via “AASReference” reference. There
is no special rule for the browse name in this case. The display name should be the same as the idShort of the
referenced element.

26. The Keys of a references are realized as an array. Every single Key is serialized as described in Clause 5.2.1.

Rules for Semantics of Model Elements

27. The “HasDictionaryEntry” reference type of OPC UA is not only used to describe the semantics of objects but
also of object types. For doing so the rules for creating identifers as defined in Clause 5.2.2 are used.

5.7.3 Example Overview

Figure 76 shows an OPC UA Server with an AAS containing several submodels: Documentation, Identification,
OperationalData and TechnicalData. For TechnicalData the attributes CoolingType, Identification, Kind, etc. are visible.
The property maxRotationSpeed has the OPC properties Kind, Value, Category and so on. The mapping are explained in
more detail in the following subclauses.

Mappings to Data Formats to Share 14.0-Compliant Information | 125

Figure 76 Overview OPC UA Server with Max Rotation Speed

adfjApadoigsyy uouyagadisey
anjep, AuadoidseH
adAjanjep fuadoigsey
pury fuadoigseH
pPPROUBWSS wauodwodseH
fiobaes fuadoigsey
PROUBWSS wauodwodseH
awepnAe|dsiq 1=6ie] 20UI3Y
« percd o T 0 5

sauaREN @

bus
bumg
|
bulsg
buas

adiaereq

(.800#0Z 1 ¥ 8-20#1-ELLO[1THI](1€30])(uoNdLIS3 Ha0U0). }

J3bau

000S
auelsu|

HILIWYHYd
anjep

shany
adAjaniep
anjep,
pury
Aobaled

awep fejdsig

MBI 553007 @1eq

#

—rdenost i

EBULITELR
anbiolxe W <
adAjanjep, o
angep, o
PlRUUBWSS % <
puiy &
fuobaled »

e PO SUORCIOUE N G A

pury e
UOnEJRUSP| W <
adfBujoo) g <
fuobate) »
B1E B IBpoWgns & A
ejeqleuonelad Q:lepowans % <
uonREIYNUIPEIRPOWgNS % <
UOIBIUAWINIO (:[3pOoWans & ¢
adfip| #
Pl &
UoHEIIUSD| W A
fuobaed &
pury e
UoneJnuap| 9 <
fuobaey &
[2POUONBIINUIPPasSY W <
1955y W A
Jolowa|dwexI;| |2y SUDNBASIUIWDYIASSY B A
100YSYVY 2 A
sP2fg0 O A
100y ©

-

x &

WBIbH oN £,
souds ssa.ppy
digH sbuias uawniof 1aaaT maip 9

Aaloigman - JuR)) 2UNPRULRIY PRUIUN Id0 24 - Hadken uonewainy pauyun [

126 | Mappings to Data Formats to Share 14.0-Compliant Information
5.7.4 ldentifiables and Referables

Identifiables and Referables are modelled as interfaces, see Figure 77. As exaplained in the rules idShort is not only a
property but in cases with no predefined browse name also the browse name of an object.

Figure 77 Identifiables and Referables in OPC UA

BaselnterfaceType

IAASReferableType
PropertyType::
Category
PropertyType::
IdShort
IAASIdentifiable Type

Identification ——»» AASlIdentifierType

Administration PrODerlt()j/Type: :
PropertyType::
IdType

AASAdministrativelnformationType

PropertyType::
Version
PropertyType::
Revision

5.7.5 Example Submodel with Property etc.

In Figure 78 an example for a submodel with one property “MaxRotationSpeed” is shown. The example is not complete,
some attributes like kind etc. are missing. In the next Clause the same example is shown adding semanticld.

In Figure 79 the definition of the submodel type is shown.

In Figure 80 the same example from Figure 78 is shown in UAExpert.

Mappings to Data Formats to Share 14.0-Compliant Information | 127

Figure 78 Example Submodel TechnicalData (Extract)

AASSubmodelType::
TechnicalData
DisplayName =

Submodel:TechnicalData AASIdentifierType::
Identification

PropertyType:: PropertyType::
IdShort = +| Id = http//i40.customer.comitype/

TechnicalData 1/1/7A7104BDAB57E184

PropertyType::
IdType = IRI

AASPropertyType::
MaxRotationSpeed

PropertyType::
IdShort =
MaxR otationSpeed

PropertyType::
Value = 5000

Figure 79 OPC UA Structure Submodel

semanticld DictionaryEntryType::

AASSubmodelElementType <DictionaryEntry>

Hasinterface

IAASReferableType

AASReferenceType::
<DataSpecification>

47 PropertyType::
Kind

AASQualifierType::
<Qualifier>

128 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 80 Example UAExpert Max. Rotatation Speed Property

Display Name Value Datatype

1 Cateqgory PROPERTY String

2 Keys Null

3 Id 0173-1#02-B AA120#008 String

4 IdType IRDI String

5 Keys Null

6 DataType INTEGER_MEASURE String

7 Definition Doubleclicktodisplayvalve localizedText
8 PreferredMame Doubleclicktodisplayvalue | localizedText
9 ShortName String

10 Unit 1/min String

1 Revision 2 String

12 Version String

13 Keys [(GlobalReference)(no-local)[IRDII0173-1#05-AAAB50#002 ' String

5.7.6 Example Property of a Submodel with Semanticld

In the following (Figure 81) the example from Clause 5.7.4 is extended and now also includes a semantic reference to a
concept description ofr MaxRotationSpeed (modelled via “HasDictionaryEntry” reference type of OPC UA).

The property with idShort and thus browse name MaxRotationSpeed has a reference to a dictionary entry with IRDI
“0173-1#02-BAA120#008. Since the semanticld is an IRDI the AASIrdiConceptDescriptionType is instantiated.
AASIrdiConceptDescriptionType is inheriting from the OPC UA Object Type ,,IrdiDictionaryEntryType* as defined in

the Amendment for Dictionary Entries.

Figure 81 Example MaxRotationSpeed Property as part of Submodel TechnicalData

SubmodelType::
TechnicalData | AASIdentifierType
DisplayName = ::Identification
Submodel:TechnicalData

PropertyType::
Id = http.//i40.customer.com/type/1/1/7A7104BDAB57E184

PropertyType::

IdShort =
TechnicalData
PropertyType::
IdType = IRI
AASPropertyType:: - AASIrdiConceptDescriptionType::
7 MaxRotationSpeed HasbictionaryEntry > 0173-1#02-BAA120#008

PropertyType::
IdShort =
MaxRoRIoNSpecy HasAddin_ | pataSpecificationEC61360Type::
DataSpecification|EC61360
PropertyType::
Value = 5000

PropertyType::
PreferredName =
[0] Max. rotation speed (EN)
[1] max. Drehzahl (DE)

. PropertyType::
Unit = 1/min

5.7.7 Examples Submodel Element Collections

SubmodelElementCollection is mapped to AASOrderedSubmodelElementCollectionType if ordered=True and

AASSubmodelElementCollection if ordered=False (see Figure 82).

An Example for a collection is shown in Figure 83.

Mappings to Data Formats to Share 14.0-Compliant Information | 129

Figure 82 Structure CollectionType and OrderedCollectionType

AASSubmodelElement
CollectionType

AASSubmodelElementType::
<SubmodelElement>

PropertyType::
AllowDuplicates

AASOrderedSubmodelElement
CollectionType

PropertyType::
AllowDuplicates

HasOrderedComponent AASSubmodelElementType::
<SubmodelElement>

Figure 83 Example Submodel Documentation with Collection for OperatingManual

v & Submodel:Documentation
¢ Category
&% |dentification
¢ Kind
v & OperatingManual
¢ AllowDuplicates
¢ Category
& DigitalFile_PDF
&% DocumentClassid
&% DocumentClassName
& DocumentClassificationSystem
& Documentld
¢ Kind
& Language
& OrganizationName
& OrganizationOfficialName
& Semanticld
& Title
& Semanticld
& Submodel:ldentification
& Submodel:OperationalData
& Submodel:TechnicalData

5.7.8 Example Asset

Asset as modelled as a normal component of the AAS object (see Figure 86). Figure 84 shows as an example an Asset
with idShort “ServoDCMotor” with its reference to the assetldentificationModel. Figure 85 shows the same example in

UAEXpert.

130 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 84 Example ServoDCMotor as Asset

AASIdentifierType::

Identification
PropertyType:: PropertyType::
44 IdShort = —rﬁ Id = http://customer.com/aas/ ‘
ExampleMotor 9175 7013 7091 9168
PropertyType::
AASAssetAdministrationType:: IdType = IRI
ExampleMotor
AASAssetType::
Asset AASIdentifierType::
DisplayName = Identification
ServoDCMotor PropertyType::
S Idsg(():r,t\; PropertyType::
EY0 otor Id = http://customer.com/assets/
KHBVZJSQKIY
PropertyType::
PropertyType:: | d'IF')yp g/ :yﬁ?l
AssetKind = Instance
AASReferenceType::
AssetldentificationModel
AAS Ref
AASSubmodelType:: Reference™
Identification
Figure 85 Example UAExpert Asset ServoMotor
. Unified Automation UaExpert - The OPC Unified Architecture Client - NewProject™
Eile View Server Document Settings Help
Address Space g x Data Access View
¥ No Highlight - # Display Name Value Datatype
=2 Root A1 Category String
il | i
v © Objects § IKdr1d h?-ls;t:ua..r:'ctzsmrner.cornr'assels.r’(-{BVZJSQKIY gmg
v 3 AASROOT 4 1dType URI String
v & AssetAdministrationShell:ExampleMotor 5 Keys {'(Submodel)(local) [URI]i40.customer.com/type/1/1/F 13E8576F 6488342 String
Vil Asset Ta\x S
v & AssetldentificationModel
¥ Keys
@ Category
v & |dentification
v id
@ IdType
@ Kind
¢ Category

&% |dentification

% Submodel:Documentation
& Submodel:ldentification

% Submodel:OperationalData
& SubmodelTechnicalData

Mappings to Data Formats to Share 14.0-Compliant Information | 131

Figure 86 Structure Asset Administration Shell with Asset and Submodels

AASAssetAdministrationShell Type

HaslInterface—p

IAASIdentifiable Type

AASReferenceType::
<DataSpecification>

AASAssetType::
Asset

AASSubmodelType::
<Submodel>

AASReferenceType::
<SubmodelReference>

AASConceptDictionaryType::
<ConceptDictionary>

AASViewType::
<View>

——AASReference—p|

AASSubmodelType::
<Submodel>

DerivedFrom

AASReferenceType::

—AASReference |

5.7.9 Example File

In Figure 87 the OPC UA types for Blob and File submodel elements are shown (inheritance from AASSubmodelElement-
Type is not shown, see Figure 75). In Figure 88 an example how to model a submodel element “File” is shown for a
documentation submodel conformant to VDI2770 containing an OperationManual. The OPC type “FileType” is used for

AASAssetAdministrationShell Type::
<DerivedFrom>

modelling the file itself. In Figure 89 the same example is shown in UAEXxpert.

Figure 87 OPC UA Types for Submodel Elements File and Blob

AASBlob Type

AASFileType

L

FileType:
File

PropertyType::

FileReference

PropertyType::
Mime Type

FileType::
File

132 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 88 Example OperationManual as AASFileType

PropertyType::
IdShort =
Documentation
AASSubmodelType::
Documentation
AASIdentifierType::
Identification
AASSubmodelElement AASIriConceptDescriptionType::
CollectionType:: HasDictionaryEntry— Www.vdi2770.com/blatt1l/Entwurf/
OperationManual Okt18/cd/Document PropertyType::
Id = http://i40.customer.com/type/
PropertyType:: 1/1/1A7B62B529F19152
IdShort =
OperationManual
PropertyType::
1dType = IRI

PropertyType::
AllowDuplicates = False

AASIriConceptDescriptionType::
- » http://vdi2770.com/blatt1l/Entwurf/
SAtS'T'!eITyEEF HasDictionaryEntry———| Okt18/cd/
ERENAE] StoredDocumentRepresentation/
DigitalFile

PropertyType::
IdShort =
DigitalFile_PDF

PropertyType::
MimeType = application/pdf

PropertyType::
FileReference = /aasx/OperatingManual.pdf

FileType::File
DisplayName = OperationManual.pdf

Size = 2761

Writable = False

UserWritable =
False

Address Space
#7 Mo Highlight I}

Figure 89 Example OperatingManual File in UAExpert

Data Access View

Mappings to Data Formats to Share 14.0-Compliant Information | 133

Display Name Value
1 Category PARAMETER
. 2 Kind Instance
V= O_b‘leﬂs 3 MimeType application/pdf
v 3 AASROOT 4 Value [aasx/OperatingManual.pdf
v & AssetAdministrationShell:ExampleMotor 5 Keys {"(ConceptDescription){local) [UR I lwww.vdi2770.com/blatt1/Entwurf/Okt18...
& Asset 6 MimeType application/pdf
7 OpenCount 0
@ Category 8 Size 194061
& |dentification 9 UserWritable true
; 10 Writable true
v & Submodel:Documentation 11 InputArquments
@ Category 12 InputArquments ’ Edit Value K
iFicati 13 InputArguments
.:a'l(d:;tlllcatlon 14 QutputArguments MName Value
i 15 InputArguments 1
v & OperatingManual 16 OutputArguments v - :rg“mem Aray(2]
X 17 InputArguments v rgument
* AowOuplicates 18 OutputArguments Name FileHandle
Category 19 InputArguments
v & DigitalFile_PDF v DataType Nodeld
0 Categcn; Namespacelndex 0
v & File IdentifierType 0 (Numeric)
% Close Numeric 7
© GetPosition \-"alueRgnk . -1
@ MimeType ArmayDimensions UInt32 Amay[0]
¢ Open Description |
@ OpenCount v 1] Argument
% Read Name Data
& SetPosition ~ DataType MNodeld
@ Size MNamespacelndex 0
@ UserWritable IdentifierType 0 (Numeric)
Writable Numeric 15
& Write ValueRank -1
¢ Kind ArmayDimensions UlInt32 Amray[0]
¢ MimeType Description |
& Semanticld
@ Value
& DocumentClassid

5.7.10 Example Operation and Capabilities

In Figure 90 an operation “Scan” is shown as defined in the OPC UA Companion Specification for Autold.

It is visible that methods are not directy contained as part of the submodel but as part of an Instance of “OperationType”
first. This is because on the one side to be consistent with the other submodel elements and on the other side otherwise

no DictionaryEntry reference can be added: this is not forseen so far in OPC UA Amendment for Dictionary Entries.

The predefined reference type for methods “HasArgumentDescription” is used to describe the semantics of the input and
output variables. The references variable with the description has the “HasDictionaryEntry” representing the semanticld

information.

In Figure 91 a different modelling is shown, not yet using the predefined reference type “HasArgumentDescription” but

just explicitly modelling the input and output variables as components.

134 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 90 Example Operation Scan

OperationTvoe:: AASIriConceptDescriptionType::
P Sean ype:: HasDictionaryEntry—» http://opcfoundation.org/UA/
Autold/Scan
PropertyType::
IdShort = Scan
Operation
InputArguments::

Arguments[] = {Settings}

OutputArguments::

HasArgumentDescription

Arguments|] = {Results, Status}

. AASIriConceptDescriptionType::
| BaseDaté':\Vt?nableType.. |—HasDictionaryEntry—» http://opcfoundation.org/UA/
ettings H
HasArgumentDescription 9 Autold/Scan/Settlngs
. AASIriConceptDescription Type::
; BaseDatavariableType:: | | . e » http:/opcfoundation.org/UA/
Results Autold/Scan/Results
HasArgumentDescription
. AASIriConceptDescriptionType::
BaseDatavariableType:: | o ionanentry—» http:/opcfoundation.org/UA/
Status Autold/Scan/Status
Figure 91 Example Operation Scan in UAExpert
' Unified Automation UaExpert - The OPC Unified Architecture Client - NewProject™
Eile View Server Document Settings Help
Address Space & x Data Access View
“3 Mo Highlight o # Display Name Value Datatyp
= Root 1 Category String
v £ Objects 2 Keys ('(GlobalReference)(no-locall[URIIhttp://opcfoundation.ora/UA/Autold/Sca’} string
3 Category VARIABLE String
v &8 AASROOT 4 Value String
& AssetAdministrationShell:ExampleMotorType 5 ValueType String
v & AssetAdministrationShell:Scanner ? S;IIUG:OFV VARIARIE gg::g
v & |dentification B ValueType String
@ 1d 9 Category VARIABLE String
10 Value String
¢ ldType 11 ValueType String
v & Submodel:Methods 12 Keys {"(GlobalReference)(no-local) [URI]http:/fopcfoundation.org/UA/Autold/Scan/Results’} String
& Identification 13 Keys {'(GlobalReference)(no-local) [URI]http://opcfoundation.org/UA/Autold/Scan/Status’} String
Kind 14 Keys {"(GlobalReference)(no-local) [URIIhttp:/fopcfoundation.org/UA/Autold/Scan/Settings} String
L I
vsa@n
Category
% Operation
v & OperationlnputVariables
v & Settings
@ Category
& Semanticld
@ Value
@ ValueType
~ & OperationOutputVariables
&% Results
& Status

& Semanticld

5.7.11 Example References

In Figure 92 an example is show how to use references. References are for example used in ReferenceElements and in
RelationshipElements. For this there is a predefined AASReference reference type defined that is used for references to

Mappings to Data Formats to Share 14.0-Compliant Information | 135

local elements (Key/local=True). Local in this case means the referenced object is on the same OPC UA Server as the
AAS. For global references (Key/local=False) no AASReference can be used. In this example the global reference is
“http://i40.customer.com/type/1/1/1A7B62B529F19152”.

Figure 92 Example References shown for the reference to a submodel

AASReferenceType::
Keys
DisplayName=SubmodelRef:Documentation

AASSubmodelType::

AASReference——p .
Documentation

PropertyType::
Keys|] = {(Submodel)(local)[IRI]http://i40.customer.com/type/1/1/1A7B62B529F19152}

5.7.12 Example Qualifier
In Figure 93 the OPC UA Type for Qualifier is shown.

In Figure 93 a Submodel “TechnicalData” with the qualifier of type “life cycle qual” and value “SPEC” for “as specified”
is shown.. Normally the name of an OPC UA element corresponds to the idShort within the AAS metamodel. However,
qualifiers do not have an idShort because they are no referables. Therefore the name in OPC UA needs to be created, it is
“LifeCycle=SPEC”.

In Figure 95 the example is shown in UA Expert®,

28 In the example the name of the submodel is ,,TechnicalData_ SPEC*.

136 | Mappings to Data Formats to Share 14.0-Compliant Information
Figure 93 Qualifier Type in OPC UA

semanticld

DictionaryEntryType::
<DictionaryEntry>

‘ AASQualifierType

PropertyType:: ‘
Type

PropertyType::
Value

AASReferenceType::
Valueld

Figure 94 Example Qualifiers for Submodel

SubmodelType::
TechnicalData

AASQualifierType:: . AASIrdiConceptDescriptionType::
Qualifier:life cycle qual=SPEC HasDictionaryEntry™—=¥ " 01 12/2///61360_4#AAF575

PropertyType::
Type=life cycle qual

.| PropertyType::
"l Vvalue=SPEC

AASReferenceType::

——HasDictionaryEntry—
Valueld v

AASIrdiConceptDescriptionType::
0112/2///61360_4#AAF579

AASPropertyType::
MaxRotationSpeed

Figure 95 Example Lifecycle Qualifier for Submodel Techncial Data

v & Submodel:TechnicalData_SPEC

v Category

& CoolingType

& |dentification Data Access View

v Kind # Display Name Value

& MaxRotationSpeed ! Category

2 Type life cycle qual
& MaxTorque 3 Value SPEC
7 4 Keys ('(GlobalReference)(na-local) [IRDIN0112/2///61360_4#AAFSTY]

v ¥ Qualifierlife cycle qual=SPEC 5 Keys {GlobalReference)no-local) IRDII0T12/2///61360_4#AAF575)

v & Semanticld
v Keys
¢ Type
¢ Value
v & Valueld
@ Keys
& Semanticld

Datatype

String
String
String
String
String

Mappings to Data Formats to Share 14.0-Compliant Information | 137

5.7.13 Example Concept Description

In Figure 96 Example ConceptDescription Max. Rotation Speed (Extract) it is shown how to add the semanticld to a
property. In this example the reference “HasDictionaryEntry” references the concept description. The difference between
an external reference and a local reference to a concept dictionary is only visible looking at the addIns used to describe
the attributes of a dictionary entry. The corresponding extract that can be referenced by any element that can have a
dictionaryEntry reference is shown in Figure 96. A concrete example how it is realized in an OPC UA Server is shown in

Figure 97.

Figure 96 Example ConceptDescription Max. Rotation Speed (Extract)

AASIrdiConceptDescriptionType::
0173-1#02-BAA120#008

HasAddin_ | pataSpecification|EC61360Type::
DataSpecificationlEC61360

PropertyType::
PreferredName =
[0] Max. rotation speed (EN)
[1] max. Drehzahl (DE)

PropertyType::
Unit = 1/min

138 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 97 ConceptDescription MaxRoationSpeed in OPC UA Server

adAjuondudsa 1dacuodiplISYY
09€19D3|uonedynadseleq
uonesynadseleqgsey
J09seds|

uopensiwpy
uonesynuap|

Aiobaje)
09€19D3juonesynadsereq
uonedyadseleqseH
J03seds|

uonensiuiwpy
uonesynuap|

aweNAejdsig 1361e)

paads uonejos xewlua [1]
1yezya:q xew|ap [0]
[2)Aeuy 1xa| pazi(ed0] A

anjep awepN

v

$00#8603V8-20#1-€L10 W <
shay o
J03seDs| W A
adA1p| &
Pl e
uonedynuAp| B A
sha) o
uopedynadselegseH ¥ A
ppun % <
wn e
SWeNUoyS &
aWeNpauRjaid &
uonwyag e
adAjeleq o
09€1903|uonedynadseleq 9 A
fiobare) o
UOISIAA &
uoisinay o
uonensuIwpY 9 A
800#021LYVE-20#1-€L10 B ~
suondudsagidasuo)) A
saueuoIIg) A
Bunipny o
FETIVEINL “JIPN
1004SYV £ <
$12200 © A
1004 ©)

uonu Fuoon»._.mc—... X anien vp3
ulppyseH
usuodwo)sey
uauodwo)seH 6 5
Wwauodwosel Sﬁw (:200#059VVV-50#L-€1L0[1QY1)(1220]-0U)(20U13)24[eq0) D).} ..o.&u» m"
1wauodwo)seH buing z voisay (1
KuadoigseH buas unw/y wn oL
od buug SWeNMOUS 6
juauodwodseH X391 pazi(e30] anjea Aejdsip 0} 32112 lgnoq awenpauajald 8
auodwoseH 13| pazi|edo0] anjea Aejdsip 01 %212 3jgnoQ uonuaq &
auodwoasen a._._ﬂm JUNSYIW ¥3IDIINI 8>ﬁﬁm m
WaladuioyseH buis 1y adAlp] ¥
auodwo)seH buuis 800#02LYV8-20#L-EL10 Pl €
IINN shay ¥
e buug AL¥3dOyd Aiobaied |
5 v!e.m_ T o adfereq anjep awenN Aejdsig "
souaRy Q MBI SSENY ©IRQ

x &

WOIGIH oN 4
20eds ssappy

3[01gMap - Ju31j) 2ANP3INYIIY PAIJIUN IdO YL - Badxgen uoijewoIny paiiun -

Mappings to Data Formats to Share 14.0-Compliant Information | 139

5.7.14 Example Data Specification

In Figure 98 the data specification template for IEC61360 is defined. In this case the id and idShort are fixed. It also has
a version. Additionally the Browse Name is fixed since it is used as addIn (using the reference type “HasAddIn” from
OPC UA).

The usage of the template was discussed in Clause 5.7.13.

Figure 98 Example Data Specification Template IEC61360

DefaultinstanceBrowseName
AASDataSpecificationlEC61360Type ,DataSpecificitionl EC61360"

PropertyType::
IdShort =
DataSpecification|EC61360
PropertyType::
Category

PropertyType::

Identification IdType = IRI

PropertyType::
Id = http://admin-shell.io/
DataSpecification Templates/
DataSpecification|EC61360/2/0

il

Administration

PropertyType::
Version = 2

PropertyType::
Revision =0

LocalizedText

PreferredName

ShortName LocalizedText

1
i

5.7.15 Example Event
In Figure 99 the event type in OPC UA is shown. It uses the Event Mechanism of OPC UA.

140 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 99 Event Type in OPC UA

AASEventType

GeneratesEvent

BaseEventType

5.7.16 Example HasDictionaryEntry for Model

In Clause 5.7.6 it was shown how to describe the semantics of an instance of an OPC UA type. Using the same reference
type “HasDictionaryEntry” also the semantic of the types, variables etc. themselves can be described. This is shown for
the submodel in Figure 100.

Figure 100 HasDictionaryEntry for Submodel

AASIriConceptDescriptionType::

AASSubmodelType HasD yEmY http://admin-shell.io/aas/Submodel

AASIriConceptDescriptionType::

Hasinterface—— |AASIdentifiable Type HasDictionaryEntry—————® http://admin-shell.io/aas/Identifiable

AASReferenceType::
<DataSpecification>

AASIriConceptDescriptionType::
http://admin-shell.io/aas/HasDataSpecification/dataSpecification

PropertyType:: : AASIriConceptDescriptionType::
Kind h YRR http://admin-shell.io/aas/HasKind/kind

AASQualifierType::

AASIriConceptDescriptionType::

HasDictionaryEntry—

<Qualifier> http://admin-shell.io/aas/Qualifier
AASSubmodelElementType:: AASIriConceptDescriptionType::
<SubmodelElement> " ' e http://admin-shell.io/aas/SubmodelElement

5.8 AutomationML

5.8.1 General

For import and export scenarios the metamodel of an Asset Administration Shell needs to be serialized. In the following
clauses an overview of the main concepts of the Asset Administration Shell serialization using AutomationML (IEC
62714) are presented. As a serialization format, AutomationML is especially suitable for the engineering phase.

In general the serialization approach is to map each object of the Asset Administration Shell metamodel to an
AutomationML Role Class or to an AutomationML Role Class accompanied by an AutomationML Interface Class. This
Role Class and (if applied) Interface Class then also define the required attributes in AutomationML.

Asset Administration Shells itself shall be modelled as AutomationML System Unit Classes or as Internal Elements within
an Instance Hierarchy depending of the kind information of type and instance.

For the Role Classes and Interface Classes that are required for the serialization an AutomationML Role Class Library
resp. an Interface Class Library are defined and provided to the public.

Mappings to Data Formats to Share 14.0-Compliant Information | 141

One of the goals is to ensure that the AutomationML model of the Asset Administration Shell can be used as a standalone
AutomationML model as well as in combination with existing AutomationML models such as the upcoming
AutomationML Component Description. Therefore, the definition of the serialization approach defined in this clause is
interleaved with the AutomationML definitions and applies the AutomationML technology definitions widely on
https://www.automationml.org/o.red.c/dateien.html

The example is shown in tool “AutomationML Editor” of AutomationML e.V. 2015.

5.8.2 Rules

The rules for mapping of the AAS information model to AutomationML information model are given in the following.
In subsequent clauses examples for the rules are given. For reasons of simplicity the term AML element is used for either
InternalElements or for SystemUnitClasses or interfaces (or all of them) depending on the context.

Generic Rules for mapping:

(1) If present, AML role class and attribute name are taken from the AAS metamodel.

(2) If present, AML element names are the same as the value of idShort information from the AAS. If not present,
a sufficiently unigue element name is to be generated.

(3) Attributes of AAS Classes are modelled as attributes of AML elements.
The morphology of the AML and AAS information is in principle the same.

(4) Semantics of AML attributes is given by the AML RefSemantic attribute. Semantics of AML elements are
defined via AML role and interface classes.

The values of RefSemantic follow the rules as described in Clause 5.2.2.

Example for RefSemantic values: AAS:Qualifier, AAS:Qualifier/type, AAS:Qualifier/value
For a complete list of all RefSemantic values see Annex H.iii.
Note: RefSemantic is not identical to semanticld in AAS. The difference is explained in Clause 5.8.8.
(5) Attributes on AML Elements are created only if required.
Attributes, such as category, are only created for AML elements, if values are present in the AAS and vice
versa.
(6) Values of Attributes in AAS which are of type “Reference” are serialized as string.
e The rules for serialization can be found in Clause 5.2.1
e Example: (Submodel)(locaD[IRI]http://www.myuri.de
o Every internal element that represents information of the AAS metamodel. A Tool with AASX-
Import would search only for the AAS roles in the AML file. However, an AutomationML tool could
also export/write a file containing AAS roles and other roles/models.

Rules for elements other than SubmodelElements of the AAS:

(7) Qualifiers are mapped on instance level to a complex attribute in AML
e Name of top-most hierarchy attribute: qualifier:<value of AAS:Qualifier/type>=<value of
Qualifier/value>. Example: “Qualifier:PredicateRelation=GREATER_THAN_0”
e Subordinate attributes of the qualifier are mapped to subordinate attributes of the attribute in AML, e.g.
for qualifier type, qualifier value with according AML RefSemantic.
(8) View as InternalElement with RoleClass View groups mirror elements
The internal elements with the assigned role class “View” group one to many mirror elements as a child. The
target of the mirror element is the AAS entity identified by the AAS View as a contained element. A mirror
element points with it’s RefBaseSystemUnitPath attribute to the UUID of the corresponding AML element.

Rules for subtypes of AAS SubmodelElement:

(9) All AAS SubmodelElements are mapped to AML InternalElements with an associated role class equal to the
respective SubmodelElement subtype (e.g. AAS Property to AML Role Class Property).

(10) For submodel element File an interface FileDataReference with it’s predefined attributes refURI and
MIMEType is used for referencing the file. Attribute value of submodel element File is not needed.

142 | Mappings to Data Formats to Share 14.0-Compliant Information

(11) For submodel elements ReferenceElement and RelationshipElement the interface “ReferableReference” is
used to reference to the corresponding objects. In case of a local reference (AAS:Key/local = True) the interface
“ReferableReference” needs to be set and is pointing to the corresponding element within AutomationML via an
InternalLink. In this case, the value is empty. In case of an external reference (AAS:Key/local = False) no
InternalLink is set for the interface. Instead, the value attribute carries a serialization of the AAS Reference.

(12) For Operation, the Operation is mapped to an InternalElement in AML with Role Class Operation.

e Input~/output~/inoutputVariable attributes of an AAS Operation are mapped to InternalElements in
AML with RoleClass OperationInputVariables, OperationOutputVariables resp.
OperationlnoutputVariables . These InternalElements contain subordinated InternalElements for the
submodel elements.

(13) SubmodelElementCollection is mapped to an InternalElement in AML with RoleClass
SubmodelElementCollection. It contains subordinated InternalElements for contained elements.

Rules for the instance hierarchy of AML.:

(14) For an AASX Tool with AML Export typically an instance hierarchy needs to be created. This instance hierarchy
needs a name. If there is no other naming convention or no existing instance hierarchy that shall be used a
possible name for the InstanceHierarchy is “AssetAdministrationShellinstanceHierarchy”. It contains the asset
administration shells containing elements of kind=Instance. Elements within this hierarchy have the role
“AssetAdministrationShell”.

Note: The AML import to an AASX Tool just needs to look for the role “AssetAdministrationShell”, not for the
names of the instance hierarchies.

(15) For an AAS with concept descriptions an AASX Tool with AML Export needs to create an instance for the
concept descriptions. If there is no other naming convention or no existing concept description instance hierarchy
then a possible name for the InstanceHierarchy is“AssetAdministrationShellConceptDescriptions”. It contains
the concept descriptions used or that can be used within the asset administration shells. The role of the elements
contained in this instance hierarchy is “ConceptDescription”.

Note: The AML import to an AASX Tool just needs to look for the role “ConceptDescription”, not for the names
of the instance hierarchies.

(16) For each AAS related element within an instance with role “AssetAdministrationShell” the corresponding role
within AssetAdministrationShellRoleClassLib is assigned.

(17)In case of an AAS element having a data specification additionally an instance of the corresponding template
with Role DataSpecificationConcent within the corresponding SystemUnitClassLib is assigned. Thus, all
attributes defined within the template are additionally predefined for the element.

(18) The name of the element within a concept description being instantiated by a data specification template, i.e. an
element with role “DataSpecifiationConent”, is “EmbeddedDataSpecification”. If more than one data
specification template is used then the element containing the different elements has the name
“EmbeddedDataSpecifications” (no role) and its sub-elements are names
“EmbeddedDataSpecificication_<Number>" because the names need to be unique.

(19)In case of a concept description AAS has a predefined data specification template (Role DataSpecification)
called “DataSpecificationlEC61360Template”. This template is used for a concept description by instantiating
its content, i.e. element with role “DataSpecificationContent .

(20) The name of the elements within a library needs to be ungiue. This is why for concept descriptions within the
library for concept descriptions the name is choosen as follows:
<value of AAS:ConceptDescription/idShort>__<value of
AAS:ConceptDescription/identification/idType>_<value of AAS:ConceptDescription/identification/id>

Rules for the Role Class Library of AML:

(21)There is a predefined RoleClassLibrary with name “AssetAdministrationShellRoleClassLib”.
It contains all roles specific for asset administration shells.

(22)All AAS referables (and thus identifiables) are mapped to specific Role Classes in AML.
The name is identical to the name in AAS.

Mappings to Data Formats to Share 14.0-Compliant Information | 143

(23) A small number of role classes are required for entities that have cardinality > 1 and different names like
“OperationinputVariables”, “OperationOutputVariables”. and “OperationInoutputVariables ” of Operation

Rules for System Unit Class Libraries:

(24) For an AASX Tool with AML Export a system unit class library needs to be created if the AASX contains
submodels or submodel elements of kind=Template. This system unit class library needs a name. If there is no
other naming convention or no other system unit class lib that can be used a possible name for the library is
“AssetAdministrationShellSystemUnitClasses™. It contains the asset administration shells containing elements of
kind=Type. Elements within this library have the role “AssetAdministrationShell”.

Note: The AML import to an AASX Tool just needs to look for the role “AssetAdministrationShell”, not for the
names of the system unit class libraries.

(25) If an AAS contains a submodel of kind=Template, then a corresponding SystemUnitClass is created for:

e the AAS itself, and
e the submodels within the AAS with kind=Template

(26) The same roles as for AAS with submodels of kind=Instance are assigned.

(27)There is a predefined SystemUnitClassLibrary with name “AssetAdministrationShellDataSpecification-
Templates”.

It contains the predefined data specification templates as defined in Asset Administration Shell in Detail. These
data specifications have the role “DataSpecification”.

(28) A Data Specification has an internal element with role “DataSpecificationContent” defining all the attributes
available when using the data specification.

(29) In case there is the need to assign more than one data specification template to an element a system unit class
containing the needed data specification content elements needs to be defined.

Rules for Interface Libraries:

(1) There is a predefined InterfaceClassLibrary with name “AssetAdministrationShelllnterfaceClassLib”.
It contains the predefined interfaces used within the asset administration shell.

(2) FileDataReference is an interface derived from the AutomationML interface “ExternalDataReference”. It is
used as interface for submodel element “File”.

(3) ReferableReference is an interface for realizing references as used within submodel elements
“ReferenceElement” and “RelationshipElement” (and its subclasses) within asset administration shells

5.8.3 Example Overview

In Figure 101 the example is shown in the AutomationML Editor. Details are explained in the following subclauses.

144 | Mappings to Data Formats to Share 14.0-Compliant Information

e - —

{ Bjoysseguonewoiny :ssey}uonessdQ by
{wewsadiysuoney :ssep)iuawaFdiysuonejaypaleiouuy b
{ ajoyesegnuonewolny issejd}uawiadiysuonelRy w4

3INUIIE BY] JO UOIIUYSP dNUBWSS 3Y) smojje sy "Aieiqy
NqUYIe PauUlSp e JO UOHIUYSP B 0} 3JU3I3J31 y DIJUBLLAS)SY

pazipiepue)s e ul ayngupe ue o} b -3

2Ruews [2|oyasegTNUONEWOINY ISR} IUSWI|IIUIAY [¢
{ ajoyaseguonewoIny ssej}Auadold by
{ejegeussixg ssep}a|y B «
{ ajoyasegiyuonewoiny issep}Auiqede) o
{ sjoyesegiuonewony ssed}qolg pu
qr]sse|JeoejuJNUCHEWOoINY B ¢ { ajoyeseguonewOoNy SSR|D} UOKDI||OJURWIRIIRPOWGNS [
qnisseRoepRUYdgINUCREWOINY B ¢ { a|oyeseguonewony sse|)} [Bpowqns
{ adepisjujasegUONBWOINY SSB|D)} B3UBIB)EY3|(RIBNSY oe { ajoyaseguoneWOINY SSeD}13SSY [Y
{=ouassy | issep)} edusisy a3l o- { 3joyssegyuUOneWOINY SSR[D)||PYSUOHEASIUILIPYIISSY [
= PIPNUBLLIBS/SIUBLIBSSEH:SYY] QrIsse|JeoepAU|[BYSUCHEASILIWIPYISSSY B » Qrisse|De|oY|[PYSUCHEeSIUILIPYIaSSY |
+ |- UOI}8)|02 JUBWBS JpuURWRS . _M_ E _M_ E
v suonefy [—— A
+ uoIP3||0d JUIRSUOD juensuo)
nun
a Buiys:sx adA] eyeq

anjep 3nejaq

800#0ZLVVE-20#L-€£L0lIYI}(e20))(uondinsagidaduo)) anjep
e anep suondussaidasuo)jjpysucnensiuupyIassy =5 4
1IYSUONeNSIUILIPY13SSY/GrIS58| J2|0Y|[PUSUOHENSIUIPYIESSY i
{|ppowgng :ajoy} suonessd il 4

pIphuBWaS je13p 3INqUNY

anjea {1ppowiqns :ajou} uopejuawINIOQ [¢ 5

» bBajursx JAyadoid Sy 0005 anjea {|ppowqns :ejoy} eeqeuonersdg m

plRRueWaS/s [2POWIgNS/GIsse|)2| oY [BYSUORRSILILPYISSY Y .Wa

a Jums:sx JNUBWIASSEHISYY 2 Lyya-20#L-£/ Loliayil(jedo))(uondisagidasuoy) IpnueLuas {Auadoug :ajoy} adA|Buyoo) @ « m

@ . .) {Apedoig :ej0y} anbiojxe & 4 2

m a JUSSX puUR)/pUDSEHSYY ougsy) PuBy doig ejoy A i 8

2 AioBaje> sasseDNuMWaIsAS|BYSuOReASIUIPYISSSY m {[ppowqns :3joy} ejeqeauya] i » ==

— & Sumssx fIqeIRESYY HI1INVYYd Kiobajes wopuonesypadseleq oY} g9¢ L9DIuonedypadsele w4 {|opowigns :ajoy} uoneaynuap| [4 m

m Hoysp! uonesypadseleq/qrisse|)2|oy|PYSUONRNSILIIPYIISSY b8 {19ssy 2|0y} Jo10NDQOAIRS [l 4 m

,.ﬂm a Jumsisx /e|qeIBRY SYY paadsuonejoyxey poysp! oneoypadseleq 3oy} ajejdwa) 09¢ LgHIuoneynadseleq @ {Ipysucnensiupyiassy 3|0y} iojope|dwex] G » m

< h adALereq puewss anep awen saje|dwia] uonedyadSeIeQ|[BYSUORENSIUILIPYISSSY @ p AypIeIBIHBOURISU|[[BYSUORRASIUILIPY38SSY L
—

& (x] * i)

- s, &8 qrissepuunWa)sis Aypiessipaoueisu| M

’ m o

& oan « s ampn BENe OHACEHE Y ‘¢® @

X o - 71'5 10Hp3 Tpuonewoiny [

Figure 101 Example in Automation ML Editor
Eadel

Mappings to Data Formats to Share 14.0-Compliant Information | 145
5.8.4 Example Property and Concept Description
Figure 102 shows the property “MaxRotationSpeed”.

Please note: the Unit “1/min”could have been added to the AML field “Unit” of attribute value. However, it is available
only indirectly via its semanticld (see Figure 103).

The value of attribute “semanticld” used the reference serialization as defined in Clause 5.2.1.
Figure 102 Example Property MaxRotationSpeed

=5 Attributes : MaxRotationSpeed

Hx 8

Name Value Semantic Datalype
idShort MaxRotationSpeed AAS:Referable/idShort xs:string
category PARAMETER AAS:Referable/category xs:string
kind Instance AAS:HasKind/kind xs:string
semanticld (ConceptDescription)(local)[IRDIJ0173-1#02-BAA120#008 AAS:HasSemantics/ xs:string

semanticld
value 5000 AAS:Property/value xs:integer

Figure 103 Example DataSpecificationContent of Concept Description MaxRotationSpeed conformant to
template DataSpecificationlEC61360Template

Bl Attributes - O
Attribute-Table = [® .
Name Value *O x Unit ~ O x

~ preferredName

aml-lang=de max. Drehzahl
aml-lang=en Max. rotation speed
~ Attribute
shortName
unit 1/min
unitld (GlobalReference)(no-local)[IRDI)
0173-1#05-AAA650#002
dataType INTEGER_MEASURE
~ definition
aml-lang=de Héchste zuldssige Drehzahl, mit

welcher der Motor oder die
Speiseinheit betrieben werden darf

aml-lang=en Greatest permissible rotation speed
with which the motor or feeding
unit may be operated

BEELEE Attributes G GEIRIGS

146 | Mappings to Data Formats to Share 14.0-Compliant Information

5.8.5 Example Attributes of Attributes

Complex Types are realized as attributes with sub-attributes

(see Figure 104).

Figure 104 Example Identification with two subattributes

Attributes

4 B identification

@ idType

<A id

5.8.6 Example Language Tagged Strings

For attributes of type langString or LangStringSet the predefined AML attribute “aml-lang” is used (see Figure 105).

Figure 105 Example for attribute value in multiple languages

4 "B AssetAdministrationShellinstanceHierarchy
a [If] ExampleMotor { Class Role AssetAdministrationShell }
w [If] ServoDCMotor { Class Role Asset }
a [if] Identification { Class Role Submodel }
w [I]] Manufacturer { Class Role Property }
« [IE] GLN { Class Role Property }
w [IE] ProductDesignation { Class Role Property }
w [if] SerialNumber { Class Role Property }
w [if] TechnicalData { Class Role Submodel }
w [If] OperationalData { Class Role Submodel }

w [If] Documentation { Class Role Submodel }

5.8.7 Example Asset

Bl Attributes

Attributes
« | @ identification
@ idShort
> category
& |« description

aml-lang=EN

@ aml-lang=DE

@ kind

> semanticld
A Attribute Detail: aml-lang=EN
Description
Unit
AttributeDataType
DefaultValue

Value Identification from Manufacturer

RefSemantic [0]

In Figure 106 the asset represented by an asset administration shell is shown: it has the role “Asset” assigned to it.

Figure 106 Example Asset in Instance Hierarchy

[+] [X] AWV

» “B InstanceHierarchy
&[] ExampleMotor { Class

Role AssetAdministrationShell }

v [IE] ServoDCMotor { Class Role Asset}
v [If] Identification { Class Role Submodel }

5.8.8 Example RefSemantic

Note: RefSemantic is an attribute of AutomationML whereas semanticld is an attribute of Asset Administration Shell.

Mappings to Data Formats to Share 14.0-Compliant Information | 147

RefSemantic?® describes the semantics of the metamodel. Thus the values reference to a description within the Asset
Administration Shell Specification.

Semanticld describes the semantics of an instance.

RefSemantic for the AML attribute “semanticld” of an AML element “MaxRotationSpeed” for example says that it has
the semantics as defined for the attribute “semanticld” within the AAS specification. The semanticld of the property says
that it is the maximum rotation speed (see Figure 107).

For a complete list of all RefSemantic see Annex H.iii.

Figure 107 Example for RefSemantic and semanticld of the Property “MaxRotationSpeed”

MaxRotationSpeed — 0O

E+*E®
@ jdShort
@« category
@ kind

semanticld

@ yalue

Attribute detail: semanticld

Value a
Value (ConceptDescription)(local)[IRDIJ0173-1#02-BAA120#008
Default Value D?
Data Type xs:string v
Unit
Constraint Constraint collection

Relations R

¥ Semantic Semantic collection -]+
[0] AAS:HasSemantics/semanticld
Semantic

RefSemantic: A reference to a definition of a defined attribute, e. g. to an attribute in a standardized
library, this allows the semantic definition of the attribute.

5.8.9 Example References

References are serialized into a single string. See example in Figure 108: The value of the semanticld is typed as
“Reference” and is serialized as string.

Exceptions: ReferenceElement and RelationshipElement including its subtypes as well as Views.

2 In the tooling it is sometimes just denoted as ,,Semantic*.

148 | Mappings to Data Formats to Share 14.0-Compliant Information

Figure 108 Example for serialized reference as value for attribute semanticld

Bl Attributes — O
Attribute-Table = [® .
Name Value - X nv X
idShort MaxRotationSpeed
category PARAMETER
kind Instance
semanticld (ConceptDescription)
(local)[IRDIJ0173-1#02-
BAA120#008
value 5000

Internal Links

5.8.10 Example ReferenceElement

In Figure 108 an example for a reference element is given: it references another element within the AAS by using the
interface “ReferableReference”. The blue dotted line represents a InternalLink to the target referenced element (not visible
here).

Figure 109 Example for ReferenceElement with Interface

» [IE] ReferencedObject { Class Role ReferenceElement }
- ReferencedObject-Interfaces
~o ReferableReference { Class ReferableReference }
AssetAdministrationShellRoleClassLib/ReferenceElement
AssetAdministrationShellRoleClassLib/SubmodelElementCollection
AssetAdministrationShellRoleClassLib/Submodel
AssetAdministrationShellRoleClassLib/AssetAdministrationShell

5.8.11 Example File

In Figure 110 an AAS File submodel element is shown. It is realized with the predefined AML interface
FileDataReference from Interface Class Library “AssetAdministrationShelllnterfaceClassLib”. It is derived from the
AML interface “ExternalDataReference” from Interface Class Library “AutomationMLBPRInterfaceClassLib” that again
is derived from the AML interface “ExternalDataConnector” as defined in the Interface Class Library “AutomationML-
InterfaceClassLib”. The interface FileDataReference already has a MIMEType inherited that is conformant to
AAS:/File/mimeType.

Figure 110 Example File

v [ii] Title { Class Role Property) Bl Attributes - O
w [if] Language { Class Role Property }
+ [DigitalFile_PDF { Class Role File } hatetus b “BE
a =% DigitalFile_PDF-Interfaces Name Value - x Unit ~ X
«o FileDataReference { Class FileDataReference } || MIMEType application/pdf
AssetAdministrationShellRoleClassLib/File refURI /faasx/OperatingManual.pdf

—_—— [y - — - - -

5.8.12 Example Operation
Operation is mapped to InternalElement in AML with Role Class Operation.

InoputVariables/OutputVariables/InoutputVariables are mapped to InternalElements in AML with RoleClass Operation-
InputVariables resp. ~Output~. These InternalElements contain subordinated InternalElements for the submodel
elements.

Mappings to Data Formats to Share 14.0-Compliant Information | 149

The in or out element can be empty, i.e. does not need to have child elements.

Figure 111 Example Operation ""SelectProgram™ with input variables

4 (it Operations {Role: Submodel}
4 (it} SelectProgram {Role: Operation}
4 [ig] |nputVariables {Role: OperationinputVariables}
it} ProgramNumber {Role: Property}
4 [ig] OutputVariables {Role: OperationOutputVariables}
4 it Result {Role: Property}

5.8.13 Example Qualifier

The example in Figure 112 shows a property with two qualifiers. One of the qualifiers is of type “ExpressionSemantic”,
the other of type “PredicateRelation”. The qualifier value of the “PredicateRelation” qualifier is “GREATER THAN 0”.

Qualifiers are not referable, i.e. they do not have an idShort attribute. This is why a name of the AML attribute was
generated as follows:

qualifier:<value of AAS:Qualifier/type>=<value of Qualifier/value>.

Figure 112 Example Qualifier “PredicateRelation” with qualifier value “GREATER_THAN_0” for a Property

v oot
(%]
jdShort
@ category
@ kind

«® semanticld

@ yalue
4 @ qualifier:PredicateRelation=GREATER_THAN_0
typ

@ value
Attribute detail: type
Value

Value PredicateRelation

Default Value

Data Type xs:string
Unit
Constraint
Relations
¥ Semantic
[0] AAS:Qualifier/type

5.8.14 Example Concept Descriptions

Concept Descriptions are stored in an Instance Hierarchy. The default name is “AssetAdministrationShellConcept-
Descriptions”.

The name of the elements within an instance hierarchy needs to be unique. This is why the name is choosen as follows:

<value of AAS:ConceptDescription/idShort>_<value of AAS:ConceptDescription/identification/idType>__<value of
AAS:ConceptDescription/identification/id>

150 | Mappings to Data Formats to Share 14.0-Compliant Information

An example concept description for max. rotation speed using the predefined data specification template “Data-
Specification|EC61360” is shown in Figure 113 and Figure 114.

Figure 113 Example Concept Description using predefined data specification template IEC61360

» [If] MaxRotationSpeed_ IRDI_0173-1_02-BAA120_008 { Class Role ConceptDescription }

EmbeddedDataSpecification { Class DataSpecificationlEC61360 Role
DataSpecificationContent }
[RR] AssetAdministrationShellRoleClassLib/DataSpecificationContent

[RR] AssetAdministrationShellRoleClassLib/ConceptDescription

Figure 114 Example Embedded Data Specification IEC61360 of Concept Description for Property
“MaxRotationSpeed”

Bl Attributes - O
Attribute-Table kB
Name Value *O x Unit ~ 0 x

+ preferredName

aml-lang=de max. Drehzahl
aml-lang=en Max. rotation speed
~ Attribute
shortName
unit 1/min
unitld (GlobalReference)(no-local)[IRDI)
0173-1#05-AAAG50#002
dataType INTEGER_MEASURE

~ definition

aml-lang=de Héchste zuldssige Drehzahl, mit
welcher der Motor oder die
Speiseinheit betrieben werden
darf

aml-lang=en Greatest permissible rotation
speed with which the motor or

feeding unit may be operated

Attributes EEIEHERTGS

5.8.15 Example View

In Figure 115 an example view with name “SafetyView” is shown that contains a reference to the property RotationSpeed.

Figure 115 Example SafetyView

v [iE] Documentation { Class Role Submodel } o =
Header
+ [IE] SafetyView { Class Role View } :
- http://i40.customer.com/instance/1/1/AC69B1CB44F07935/RotationSpeed { Class | - A& Header
51¢6069f-c82c-4d32-9ce1-e65bb8d38a6e Role } ch Mod
[fR] A~getAdministrationShellRoleClassLib/View angenioce
[f#] AssetAdministrationShellRoleClassLib/AssetAdministrationShell Description
v °§ AssetAdministrationShellConceptDescriptions Version
Copyright
Additionalinformation [0]
Revision [‘
E AV D 1b85a1c8-4652-436a-bc82-101d9770ec11
v B8 AssetAdministrationShellRoleClassLib || Name http://i40.customer.com/instance/1/1/AC69B1CB44F07935/RotationSpeed
+ | B8 AutomationMLBPRRoleClassLib RefBaseSystemUnitPath 51c6069f-c82c-4d32-9ce1-e65bb8d38a6e
PR SRS PTF S S P PR

Mappings to Data Formats to Share 14.0-Compliant Information | 151

5.8.16 Example Submodels of kind=Template

Submodel templates (i.e. submodels and elements with kind = Template) are modelled as System Unit Classes. They are
part of a System Unit Class Library with default name “AssetAdministrationShellSystemUnitClasses”.

Figure 116 Example for System Unit Class with a Submodel template for Technical Data

SystemUnitClassLib =5 Header: kind

E m Information
Versioning

4 @ AssetAdministrationShellDataSpecificationTemplates \dentification

4 @ DataSpecification|lEC61360Template {Role: DataSpecification}
4 [DataSpecificationlEC61360 {Role: DataSpecificationContent}
4 @ AssetAdministrationShellSystemUnitClasses
4 @ TechnicalData {Role: Submodel}

el MaxRotationSpeed {Role: Property} E - L .
4 "
. E: ::dax:mq]_ue {T:e'; F'rpoperty]-) Name Value Semantic
1€ CoolingType (Role: Property
idShort MaxRotationSpeed AAS:Referable/
idShort
category PARAMETER AAS:Referable/
category
kind Template AAS:HasKind/
kind

semanticld (ConceptDescription)(local)[IRDIJ0173-1 AAS:HasSemanti
faceClassLib cs/semanticld

6 Attribute Based & Role Based Access

Attribute Based & Role Based Access | 153

6.1 Passing Permissions for Access

When having a look at the leading picture (Figure Figure 1 in Clause 3.2) also security aspects have to be considered
when transferring information from one value chain partner to the next.

When admin shell content is passed from one partner to the next, the following typical steps need to be done, here shown
for the example that the supplier passes on content to the integrator:

e Step Al-A2: The supplier makes a choice which data is to be passed on (see Clause 6.3), and thus
determines the content of the AASX package (see Clause 7).
e Step A2-A3: The AASX package is transferred to the integrator.

e Step A3-A4: The integrator receives the package and imports the content into his security domain. During
this step, the integrator has to establish access rights according to the requirements in his own security
domain.

The admin shell supports attribute based access control (ABAC), a role can be considered as one attribute in this context;
other attributes might be time-of-day, originating address and others.

There are two reasons why access permissions are passed between partners:
(a) Access permissions to information elements of an AAS must be established in each security domain.

(b) One partner must be able to pass a suggestion which access permissions should be established for the asset that
is described in the AAS.

An example for the second requirement: a robot manufacturer suggests that for the robot the following roles should be
established: machine setter, operator and a maintenance role. He also suggests permissions for these roles, e.g. an installer
does have write-access to the program of the robot, but an operator does not.

The above example motivates, that the semantics of access permission rules and their exact definitions need to be passed
from one security domain to the other.

The passing on of the semantics of attribute based access is implemented by following means:

o Definition of access permissions: The detailed access permission (e.g. read, write, delete, create, invoke method
etc.) are defined in a domain specific submodel (see defaultPermissions and selectablePermissions in Clause
6.5.5).

o Definition of the access permission rules, based on the defined access permissions. These are defined as part of
access control (see Clause 6.5.6).

e Association of access permission rules to each information element (object) of the AAS. This means is realized
by the information structure of the AAS, itself (see PermissionsPerObject in Clause 6.5.6).

In [19] examples and more background information on attribute access control and access control in general can be found.

6.2 Effective Access Permissions based on Access Permission Rules

Effective access permissions are determined based on the access permission rules.

Each information element (object) in the AAS shall have rules that defines its access permissions for each subject. The
subject is assumed to be already authenticated.

If an information element does not have these rules, it will automatically use the table for the element where it is included
(“inheritance from above"). The most upper object is the AAS itself, i.e. the AAS is the starting point for the inheritance.

As indicated before, subject identification, rule definitions and also permissions could be different for the receiving
security domain.

When the receiving party establishes access permissions during step A3-A4, it must merge the passed-on access
definitions (permissions and access permission rules) to the existing definitions in its security domain.

6.3 Filtering of Information in Export and Import

When exchanging information from partner A to partner B there are two use cases:

154 | Attribute Based & Role Based Access

e The producer of information does not want to submit the complete information but only parts of it. The
information submitted might vary depending on the specific consumer the information is submitted to. l.e. a
filtering mechanism is needed that allows to individually shape the information for the specific consumer.

e The consumer of information does not want to include all information provided by the producer of information
in his own process, i.e. he wants to filter only the relevant information.

Figure 117 Example Filtering for Export and Import

o
[Orderdata ~ mesendubuuid =~ Orderdata ~ miielyld ~ Orderdata |
[Documentation ~ pemmmgmmnd Documentation pammmid Documentation |
| Functionality ~ gobublalabud Functionality e Functionality |
[Interfaces Qo
O
| Technical data mechanics g Technical data mechanics e Technical data mechanics |
| Spareparts ~~ pammmd = Spareparts |
[logistics =~ pemmmdmmmd logistics = g logistcs |
[Support =~ messmngd Support |
[Certificates ~~ gmmpgemmd Certificates ~ papmmid Certificates |
I 1 |
| Additionaldata gt~ Additionaldata |
I O I -
| | |

Source: Hankel, Bosch Rexroth

As an example, assume that the producer is submitting the complete order data. However, the consumer (in this case the
machine builders) is filtering the information (1) and is only importing the information relevant to him. For the
functionality both are filtering: the producer is filtering what he submits to the consumer (2) and the consumer again is
not using all functionality but is filtering again which functionality shall be used in his environment. The same is possible
between machine builders and operator.

Note: In the use case considered in this document, the exchange of information via sharing of xml files etc. the
information that is not intended to be submitted needs to be extracted from the corresponding xml files before
delivery or before import, respectively. Role or attributes access control do not fit here. The corresponding
access policies might help filtering the corresponding information but they cannot be submitted as part of the
corresponding file exchanged.

Table 27 shows an example when using the defined xml format as defined in this document. In the example the German
translation shall not be submitted, only English language is provided for partner B.

Attribute Based & Role Based Access | 155

Table 27 Example Filtering of Information in XML

[-]
<property>
<idShort>>NMax</idShort>
<category>PARAMETER</category>
<description lang="EN">maximum rotation
speed</description>
<description lang="DE">maximale Drehzahl</description>
<ref hasSemantics>
<keys>
<key local="false” type="GlobalReference"
keytype="IRDI">0173-1#02-baa120#007</key>
</keys>
<fref_hasSemantics>
<value>2000</value>
</property>
[...]

Only Lang = “EN”

[..]
<property>
<idShort>>NMax</idShort>
<category>PARAMETER</category>
<description lang="EN">maximum rotation
speed</description>
<ref_hasSemantics>
<keys>
<key local="false” type="GlobalReference"
keytype="IRDI">0173-1#02-baa120#007</key>
</keys>
</ref hasSemantics>
<value>2000</value>
</property>
[-]

6.4 Overview Metamodel Asset Administration Shell for Security

The security attributes are a mandatory part of any Administration Shell.

The security attributes describe:

e Access Control Policy Points including definition of access permission rules

e Certificates

In this document mainly the aspect of access permission is dealt with. The underlying concept is the concept of attribute

based access control (ABAC) as described in [22].

Figure 118 Attribute Based Access Control [22]

Access Control
Policy

Subject Attributes

Access Control
Mechanism

Environment
Conditions

Object Attributes

156 | Attribute Based & Role Based Access

Note: Attribute in the context of ABAC is different from attributes of elements as defined in the metamodel.

The overall concept is depicted in Figure 118: A subject is requesting access to an object (1). In the context of an AAS
an object typically is a submodel or a property or any other submodel element connected to the asset. The implemented
access control mechanism of the AAS evaluates the access permission rules (2a) that include constraints that need to be
fulfilled w.r.t. the subject attributes (2b), the object attributes (2c) and the environment conditions (2d).

In Figure 119 an overview of the information model of the AAS w.r.t. security is given. The focus is on access control.

An object in the context of ABAC corresponds typically to a submodel or to a submodel element. The object attributes
again are modelled as submodel elements.

Subject Attributes need to be accessed either via an external policy information point or they are defined as properties
within a special submodel of the AAS. A typical subject attribute is its role. The role is the only subject attribute defined
in case of role based access control.

Optionally, environment conditions can be defined. In role based access control no environment conditions are defined.
Environment conditions can be expressed via formula constraints. To be able to do so the values needed should be defined
as property or reference to data within a submodel of the AAS.

Attribute Based & Role Based Access | 157

Figure 119 Metamodel Overview Access Control of AAS

class Overview Attribute Based Access Control (ABAC)/

AssetAdministrationShell

HasDataSpecification
Identifiable

+ security: Security [0..1]
+ derivedFrom: AssetAdministrationShell* [0..1]

------ security
includes

PolicyAdministrationPoint

+ localAccessControl: AccessControl [0..1]
+ externalAccessControl: boolean

v

AccessControl

+ o+ o+ o+ o+ o+ o+

selectableSubjectAttributes: Submodel* [0..1]
defaultSubjectAttributes: Submodel*
selectablePermissions: Submodel* [0..1]
defaultPermissions: Submodel*
selectableEnvironmentAttributes: Submodel* [0..1]
defaultEnvironmentAttributes: Submodel* [0..1]
accessPermissionRule: AccessPermissionRule [0..*]

v

Constraint
Formula

Qualifiabl
Referabl

AccessPermissionRule

e
e

+ dependsOn: Reference* [0..*]

+ targetSubjectAttributes: SubjectAttributes
+ permissionsPerObject: PermissionsPerObject [0..*]

N -
N -

Environment Conditions

]
|
1

V

are specified in formulas
(inherited via Qualifiable)

PermissionsPerObject

object: Referable*

targetObjectAttributes: ObjectAttributes[0..1]

permission: Permission [0..*]

Vv

Permission

permission: Property*
kindOfPermission: PermissionKind

authenticated subject attributes
(kind=Type) are defined in
submodel
selectableSubjectAttributes in
AccessControl.

An authenticated subject is
described via its attributes like
OPC UA role, qualification (in case
of human subjects),

SubjectAttributes

- — - _> + subjectAttribute: Property [1..*]

ObjectAttributes

+ objectAttribute: Property [1..%]

permission for example:
allow read, write, delete
as defined in submodel
selectablePermissions
in AccessControl

«enumeration»
PermissionKind

Allow

Deny
NotApplicable
Undefined

Via access permission rules it is defined which subject is allowed to access which objects® within the AAS. It is assumed
that the subject is already authenticated. Objects can be any referable elements, i.e. they include submodels, assets,
concept descriptions, views etc. More general it can be specified whether an authenticated subject is allowed or denied to
access an object a.s.0. “Access” might be one of the specified permissions on an element of the AAS. Which permissions
are selectable is not defined by the metamodel of the AAS. The selectable permissions are defined via a submodel
(selectablePermissions). The same holds for the subject attributes (selectableSubjectAttributes). The default subject
attributes and default permissions are used if they are not overwritten by the owner of the AAS. As for permissions the

used authenticated subject attributes are defined in submodel selectableSubjectAttributes.

30 The term “object” is used because it is more generic and in future also other objects like for example attributes of

classes may be included besides elements.

158 | Attribute Based & Role Based Access

Via formula constraints the access rights might be further constrained. For example a formula might specify that the role
“maintenance engineer” (t0 be more precise: an authenticated subject with subject attribute “role = ‘maintenance
engineer’”) is only allowed to write configuration parameters if the machine (the asset) is not running. See Figure 19 in
Clause 4.7.2.6 for a formal expression of this access rule based on the property ““Status”.

Obiject Attributes are handled in a different way. It is assumed that any property of the object in focus can additionally
take over the role of an object attribute. Therefore there is no special submodel for default or selectable object attributes.

Also the more traditional role based access control can be realized for an AAS: in this case there are no constraints (=
environment attributes) defined for the access control rules. For a subject only one subject attribute needs to be defined:
its role. For the object no additional object attributes need to be defined.

For more details on attribute based access control including examples how to apply the metamodel as defined in this
document see [19].

The classes and their attributes are defined in the following Clause 6.5.

Figure 120 gives an overview of all elements defined for security issues in the metamodel.

Figure 120 Security Overview Packages

class Security Package Overview /

Access Control

+ AccessControl

Security + AccessControlPolicyPoints

+ Securly + AccessPermissionRule
1 + CertificateHandlin - *+ ObjectAtributes

g ~==-2x{ & + Pemission
I + Acgess Control «importy + PermissionsPerObject
+ PolicyAdministrationPoint
+ PolicyDecisionPoint

N + PolicyEnforcementPoint
N + PolicyInformationPoints
N + SubjectAttributes
mporty + PermissionKind
AN
N\

CertificateHandling

+ BlobCertificate
+ Certificate

[

6.5 Metamodel Specification Details: Designators

6.5.1 Introduction

In this clause the classes of the metamodel related to security are specified in detail. It is an extension of the metamodel
as described in Clause 4.7.

For understanding the extension the basics and common abstract classes need to be understood (see especially Clause
4.7.2, Clause 4.7.21 and Clause 4.7.22).

Attribute Based & Role Based Access | 159

6.5.2 Security Attributes

Figure 121 Metamodel for Security Attributes of AAS

class Asset Administration Shell - Security/
HasDataSpecification| _
Identifiable[~~ Security
AssetAdministrationShell : . - -
: : ----->=>+ accessControlPolicyPoints: AccessControlPolicyPoints

+ security: Security [0.1] + certificate: Cerificate [0..*]

+ derivedFrom: AssetAdministrationShell” [0..1] + requiredCertificateExtension: Reference [0..%]
Class: Security
Explanation: Container for security relevant information of the AAS.

Inherits from: --

Attribute (*=mandatory) Explanation Kind Card.
accessControlPolicyPoints* Access control policy points of | AccessControlPolicy | aggr 1
the AAS. Points
certificate Certificates of the AAS. Certificate aggr 0.*
requiredCertificateExtension Certificate extensions as | Reference ref* 0.*
required by the AAS

In general it has to be considered how to enable the first configuration of the AAS w.r.t. security. This would include
setting the authorization provider endpoint etc.

There is not only one certificate per AAS because certificates can be overwritten if an AAS is taken over by a new owner.
The new owner adds a new certificate. Nevertheless the complete set of certificates needs to be available.

Attributes of certificates are defined in X509. A required extension of an ASN1 certificate can be registered via an OID.

6.5.3 Certificate Attributes

Figure 122 Metamodel for Certificates

class Security-Certificate/
«abstracty
Certificate
BlobCertificate DataElement
. Blob
+ blobCertificate: Blob ~ fF—-===
+ containedExtension: Reference [0..*] + value: BlobType [0..1]
+ lastCertificate: boolean + mimeType: MimeType

Attributes of certificates are defined in X509. A required extension of an ASN1 certificate can be registered via an OID.

160 | Attribute Based & Role Based Access

Class: Certificate <<abstract>>

Explanation: Certificate

Inherits from: --

Attribute (*=mandatory) Explanation Kind Card.

policyAdministrationPoint* | The access control administration

policy point of the AAS.

PolicyAdministrationPoint

Class: BlobCertificate

Explanation: Certificate provided as BLOB

Inherits from: Certificate

Attribute (*=mandatory) Explanation

blobCertificate* Certificate as BLOB. Blob agar
containedExtension Extensions contained in the certificate. | Reference agar 0.*
lastCertificate* Denotes whether this certificate is the | boolean attr 1

certificated that fast added last.

6.5.4 Access Control Policy Point Attributes

Figure 123 Metamodel for Access Control Policy Points

class Security - Access Control Policy Points /
AccessControlPolicyPoints
+ policyAdministrationPoint: PolicyAdministrationPoint > PolicyDecisionPoint
+ policyDecisionPoint: PolicyDecisionPoint + extemalPolicyDecisionPoints: boolean
+ policyEnforcementPoint: PolicyEnforcementPoint
+ policylnformationPoints: PolicylnformationPoints [0..1] ~~_
1 1 U=
| |
! ! PolicyEnforcementPoint
: : + extemalPolicyEnforcementPoint: boolean
v v
PolicylnformationPoints PolicyAdministrationPoint
+ internalinformationPoint: Submodel* [0.."] + localAccessControl: AccessControl [0..1]
+ externallnformationPoints: boolean + extemnalAccessControl: boolean
Class: AccessControlPolicyPoints
Explanation: Container for access control policy points.

Inherits from: --

Attribute (*=mandatory) Explanation Kind Card.

policyAdministrationPoint* | The access control administration | PolicyAdministrationPoint

policy point of the AAS.

Attribute Based & Role Based Access | 161

Class: AccessControlPolicyPoints

The access control policy decision point | PolicyDecisionPoint aggr 1
of the AAS.

policyDecisionPoint*

policyEnforcementPoint* The access control policy enforcement | PolicyEnforcementPoint aggr 1
point of the AAS.

policylnformationPoints The access control policy information | PolicylnformationPoints agar 0.1
points of the AAS.

The definition of policy decision point (PDP) is taken from [22]. The PDP computes access decisions by evaluating the
applicable decision points and meta policies. One of the main functions of the policy decision point is to mediate or
deconflict decision policies according to meta policies. Either the decision taking is done within the AAS. Then, the AAS
is autonomous and independent from an external access control system. Or the decision taking is done outside the AAS.
Then, the AAS needs to be able to access this external endpoint for decision taking.

Class: PolicyAdministrationPoint

Explanation: Definition of a security policy administration point (PAP).

Inherits from: --

Attribute (*=mandatory) = Explanation Kind | Card.

localAccessControl The policy administration point of access control as | AccessControl | aggr | 0..1
realized by the AAS itself.

Constraint AASd-009: Either there is an external
policy administration point endpoint defined or the
AAS has its own access control.

external AccessControl* | If externalAccessControl True then an Endpoint to an | boolean attr |1
external access control defining a policy
administration point to be used by the AAS needs to
be configured.

Class: PolicylnformationPoints

Explanation: Defines the security policy information points (PIP).

Serves as the retrieval source of attributes, or the data required for policy evaluation
to provide the information needed by the policy decision point to make the decisions.

Inherits from: --

Attribute (*=mandatory) Explanation Kind Card.

internalInformationPoint References to submodels defining information | Submodel
used by security access permission rules.

externallnformationPoints* | If externallnformationPoints True then at least one | boolean aggr |1
Endpoint to external available information needs to
be configured for the AAS.

The definition of policy information point (PIP) is taken from [22]. The difference between external and internal
information points is whether the AAS needs access via an endpoint to an externa source of information or whether the

162 | Attribute Based & Role Based Access

AAS stores the needed information itself. There might also be external and internal information points for an AAS to be
considered for decision taking.

Class: PolicyEnforcementPoints

Explanation: Defines the security policy enforcement points (PEP).

Inherits from:

Attribute (*=mandatory) Explanation Kind Card.

If externalPolicyEnforcementPoint True then an
Endpoint to external available enforcement point
taking needs to be configured for the AAS.

externalPolicyEnforcementPoint*

Class: PolicyDecisionPoint

Explanation: Defines the security policy decision points (PDP).

Inherits from:

Attribute (*=mandatory) Explanation Kind | Card.

boolean

If externalPolicyDecisionPoints True then
Endpoints to external available decision points
taking into consideration for access control for the
AAS need to be configured.

externalPolicyDecisionPoints*

6.5.5 Local Access Control Attributes

Figure 124 Metamodel for Access Control

class Security - PolicyAdministrationPoint/

AccessControl

selectableSubjectAttributes: Submodel* [0..1]
defaultSubjectAttributes: Submodel*
selectablePermissions: Submodel* [0..1]
defaultPermissions: Submodel*
selectableEnvironmentAttributes: Submodel* [0..1]
defaultEnvironmentAttributes: Submodel* [0..1]
accessPermissionRule: AccessPermissionRule [0..]

PolicyAdministrationPoint

+ localAccessControl: AccessControl [0..1] |~~~ =
+ externalAccessControl: boolean

+ + + + + + +

v

Qualifiable
Referable

AccessPermissionRule

+ targetSubjectAttributes: SubjectAttributes
+ permissionsPerObject: PermissionsPerObject [0..]

Attribute Based & Role Based Access | 163

Class: AccessControl

Explanation: Access Control defines the local access control policy administration point.

Access Control has the major task to define the access permission rules.

Inherits from: --

Attribute (*=mandatory) Explanation Kind Card

accessPermissionRule Access permission rules of the AAS | AccessPermi | aggr | 0.*
describing the rights assigned to (already | ssionRule
authenticated) subjects to access elements of
the AAS.

selectableSubjectAttributes Reference to a submodel defining the | Submodel ref* | 0.1
authenticated subjects that are configured for
the AAS. They are selectable by the access
permission rules to assign permissions to the
subjects.

Default: reference to the submodel referenced
via defaultSubjectAttributes.

defaultSubjectAttributes* Reference to a submodel defining the default | Submodel ref* |1
subjects attributes for the AAS that can be
used to describe access permission rules.

The submodel is of kind=Template.

selectablePermissions™ Reference to a submodel defining which | Submodel ref* | 0.1
permissions can be assigned to the subjects.

Default: reference to the submodel referenced
via defaultPermissions

defaultPermissions* Reference to a submodel defining the default | Submodel ref* |1
permissions for the AAS.

selectableEnvironmentAttribut | Reference to a submodel defining which | Submodel ref* | 0.1
es environment attributes can be accessed via
the permission rules defined for the AAS, i.e.
attributes that are not describing the asset
itself.

Default: reference to the submodel referenced
via defaultEnvironmentAttributes

defaultEnvironmentAttributes | Reference to a submodel defining default | Submodel ref* | 0.1
environment attributes, i.e. attributes that are
not describing the asset itself.

The submodel is of kind=Template.

At the same type the values of these
environment attributes need to be accessible
when evaluating the access permission rules.
This is realized as a policy information point.

164 | Attribute Based & Role Based Access

6.5.6 Attributes for Access Permission Rule

Figure 125 Metamodel for Access Permission Rule

class Security - AccessPermissionRule /

Qualifiable
Referable SubjectAttributes

AccessPermissionRule @ |-—---= - -
+ subjectAttribute: Property [1..7]
+ targetSubjectAttributes: SubjectAttributes

+ permissionsPerObject: PermissionsPerObject [0..*]
]

v
PermissionsPerObject ObjectAttributes
+ object: Referable* -T2+ objectAttribute: Property [1..%]
+ targetObjectAttributes: ObjectAttributes [0..1]

+ permission: Permission [0..%]

|
V «enumeration»
Permission PermissionKind
+ permission: Property* L————={ Allow
+ kindOfPermission: PermissionKind Deny
NotApplicable
Undefined
Class: AccessPermissionRule
Explanation: Table that defines access permissions per authenticated subject for a set of

objects (referable elements).

Inherits from: Referable; Qualifiable

Attribute (*=mandatory) Explanation Kind Card.

targetSubjectAttributes* Target subject attributes that need | SubjectAttributes | aggr | 1
to be fulfilled by the accessing
subject to get the permissions
defined by this rule.

permissionsPerObject Set of object-permission pairs that | PermissionsPerOb | aggr | 0..*
define the permissions per object | ject
within the access permission rule.

Class: PermissionsPerObject

Explanation: Table that defines access permissions for a specified object. The object is any referable
element in the AAS. Additionally object attributes can be defined that further specify the
kind of object the permissions apply to.

Inherits from: -

Attribute Explanation Kind Card.

(*=mandatory)

Attribute Based & Role Based Access | 165

PermissionsPerObject

object* Element to which permission shall be assigned. Referable attr 1
targetObjectAttributes | Target object attributes that need to be fulfilled so | ObjectAttributes | aggr 0.1
that the access permissions apply to the accessing
subject.
permission Permissions assigned to the object. Permission attr 0.*

The permissions hold for all subjects as specified
in the access permission rule.

Class: ObjectAttributes

Explanation: A set of data elements that describe object attributes. These attributes need to refer to a
data element within an existing submodel.

Inherits from: --

Attribute Explanation
*=mandatory)
DataElement

objectAttribute* A data elements that further classifies an object.

Class: Permission

Explanation: Description of a single permission.

Inherits from: --

Attribute Explanation Kind Card.

(*=mandatory)

permission* Reference to a property that defines the semantics of | Property ref* 1
the permission.

Constraint AASd-010: The property has the category
“CONSTANT”.

Constraint AASd-011: The permission property shall
be part of the submodel that is referenced within the
“selectablePermissions” attribute of
“AccessControl”.

kindOfPermission* | Description of the kind of permission. Possible kind | PermissionKind | attr 1
of permission also include the denial of the
permission.

Values:

e Allow

e Deny

e NotApplicable
e Undefined

166 | Attribute Based & Role Based Access

Class: SubjectAttributes

Explanation: A set of data elements that further classifies a specific subject.

Inherits from: --

Attribute Explanation Kind Card.

(*=mandatory)

DataElement

subjectAttribute* | A data element that further classifies a specific
subject.

Constraint AASd-015: The data element shall be part
of the submodel that is referenced within the
“selectableSubjectAttributes” attribute of
“AccessControl”.

Enumeration: PermissionKind

Explanation: Enumeration of the kind of permissions that is given to the assignment of a
permission to a subject.

Literal Explanation

Allow Allow the permission given to the subject.

Deny Explicitly deny the permission given to the subject.

NotApplicable The permission is not applicable to the subject.

Undefined It is undefined whether the permission is allowed, not applicable or denied to the

subject.

7 Package File Format for the Asset
Administration Shell (AASX)

168 | Package File Format for the Asset Administration Shell (AASX)
7.1 General

In some use cases it is necessary to exchange the full or partial structure of the Asset Administration Shell with or without
associated values and/or make the information persistent (e.g. store it in a file server). This would mean that it is necessary
to define a file format that can hold and store this information. Therefore, a package file format for the Asset
Administration Shell (AASX) is defined based on the following requirements:

e Generic package file format to include the Asset Administration Shell structure, data and other related
files

e Main use cases are the exchange between organizations/partners and storage/persistency of the Asset
Administration Shells’ information.

e Without any legal restriction and no royalties. Preferably based on an international standard with high
guarantees of future maintainability of that format

e Existence of APIs to create, read and write this format
e Digital signatures & encryption capabilities must be provided
e Policies for authenticity and integration of package files®!

The following process in Figure 126 is defined for creating and consuming AASX packages.

Figure 126 Process for generating and consuming AASX packages

= a

7 User of User of \
=) g | |

e AAS Environment / Hosting

Z o
>
o D)

-

AAS Environment / Hosting

| A

& Transport 5
g . ’ :
: e £
= Sign - = Verification
.I Pack I E I Secure l E IJ @ I—E " Validation Unpack II
AASX Ansx | ansx 2] |
Serialized files p Serialized files
Package Secure Secure i
Suppl. files g Package Package Valid Package Suppl. files
System boundary - 4.0 infrastructure of partner "A" System boundary - 4.0 infrastructure of partner “B"

The process starts by serializing the existing AAS (e.g. D1 and E1) into files (according to the serialization mechanisms
described in this document), as well as exporting other supplementary files (which are files mentioned in the structure of
the AAS, such as manuals, CAD files, etc.). All of those files will be packaged together into the AASX ZIP file format
and will be followed by several security steps that defines the policies for modifiability, encryption and digitally signing
of the files inside the AASX. The final AASX can then be transported from the AASX producer (in this case partner A)
to the AASX consumer (partner B), by digital media such as e-mail, USB-Sticks, etc. The consumer needs first to validate
and verify the incoming AASX, unpack the contained files and then import them to generate the new AAS in the consumer
environment. The process will be explained in detail in the following sub-sections.

7.2 Selection of the Reference Format for the Asset Administration Shell
Package Format

The Fihrungskreis Industrie 4.0 — UAG Verwaltungsschale has decided to use the Open Packaging Conventions (OPC)%?
format as the reference for the Asset Administration Shell package format definition, due to the following reasons:

31 Role-based policies to access this package is not defined, as this is a feature of the systems that host the AASs (see
section 6)

32 Not to be confused with OPC (Open Platform Communication) of the OPC Foundation. Therefore, we will use the full
term of “Open Packaging Conventions” instead of the abbreviation “OPC”.

Package File Format for the Asset Administration Shell (AASX) | 169

e Open Packaging Conventions is an international standard specified in ISO/IEC 29500-2:2012 and
ECMA-376.

e Open Packaging Conventions is based on ZIP (as a package container) and XML (for the description of
some internal files and definitions). Those two technologies are the most widely used in their respective
domains and are also addressed for long-term archiving.

e Open Packaging Conventions can be used as package for non-office applications too (there are many
examples available, such as NuGet, FDI packages, etc.). It provides a logical model that is independent
from how the files are stored in the package. This logical model can be expanded to any sort of
application.

e Open Packaging Conventions is also used in the scope of Industry (e.g. FDI packages) and currently in
discussion as possible container format for some FDT® and ODV A Project xDS™ use cases.

e Open Packaging Conventions (and Open Document Format packages too) supports digital signing. It can
be done for individual files inside the package. Encryption isn’t specified in Open Packaging Conventions
(it only mentions what shall not be done). Anyway, encryption is still possible (see later)

e There are some APIs to handle Open Packaging Conventions packages (Windows API, .NET, Java, ...)
without the need of much knowledge on the technical specification

e Chunking in Open Packaging Conventions is encouraged, i.e. split files into small chunks. This is better
for reducing the effect of file corruption and better for data access.

e There are some international organizations that recommend using Open Document Format (ISO/IEC
26300-3) instead (e.g. EU, NATO, ...), but this recommendation is related to the formats used specifically
in office applications.

e The Office Open XML and Open Packaging Conventions specifications originated from Microsoft
Corporation and later standardized as ISO/IEC 29500 and ECMA-376. Current and future versions of
ISO/IEC 29500 and ECMA-376 are covered by Microsoft's Open Specification Promise, whereby
Microsoft “irrevocably promises” not to assert any claims against those making, using, and selling
conforming implementations of any specification covered by the promise (so long as those accepting the
promise refrain from suing Microsoft for patent infringement in relation to Microsoft's implementation
of the covered specification). [24]

o Office Open XML (including the Open Packaging Conventions format) and Open Document Format are
politically conflicting formats (see details in [25]and [26]). Choosing Open Packaging Conventions as
the option for storing the Asset Administration Shell information was solely a technical decision based
on the arguments mentioned here.

e Open Packaging Conventions was chosen in favour of iiRDS (v1.0). The scope of iiRDS might not be
aligned with the requirements of the Asset Administration Shell, i.e. iiRDS is mostly a format for storing
technical documentation of industry devices based on concepts of ontology.

7.3 Basic Concepts of the Open Packaging Conventions

The packaging model specified by the Open Packaging Conventions describes packages, parts, and relationships.
Packages hold parts, which hold content and resources, such as files*®. Every file in a package has a unique URI-compliant
file name along with a specified content-type expressed in the form of a MIME media type.

Relationships are defined to connect the package to files, and to connect various files in the package. The definition of
the relationships is the logical model of the package. The resource that is a source of a relationship must be either the
package itself or a data component (file) inside of the package. The target resource of a relationship can be any URI-
addressable resource inside or outside of the package. It is possible to have more than one relationship that share the same
target file (see example 9-6 in ISO/IEC 29500-2: 2012).

The physical model maps those logical concepts to a physical format. The result of this mapping is a physical package
format (a ZIP archive format) in which files appear in a directory-like hierarchy. Any individual or organization can

3 The term “file” will be used instead of “part”.

170 | Package File Format for the Asset Administration Shell (AASX)

design a physical package format by mapping logical package concepts to a desired physical format. Thus, package format
designers can design and optimize a physical format for the specific needs of an application without compromising the
logical structure of the package (adapted from [27]and [28]).

7.4 Conventions for the Asset Administration Shell package file format
(AASX)

The Asset Administration Shell Package (AASX) format derives from the Open Package Conventions standards,
consequently inheriting its characteristics. Nevertheless, some convention shall be defined for the AASX:

e Package format and rules according to ISO/IEC 29500-2:2012. Any derivate format from this standard
(such as the AASX format) requires the definition of a logical model, physical model and a security
model. Those specific conventions are described in the next subsections.

o File extension for the AASX format: .aasx
e MIME-type for the AASX format: application/asset-administration-shell-package®*
e Icon for the AASX.

e The AASX format can be identified by the file extension and MIME type. Content-wise, it is possible to
identify it when reading the first relationship file /_rels/.rels (as defined in Open Packaging Conventions)
and looking for a relationship type http://admin-shell.io/aasx/relationships/aasx-origin (which is the
entry point for the logical model of the Asset Administration Shell).

e The following paths and filenames in the package are already reserved by the Open Packaging
Conventions specification and therefore shall not be wused for any derivative format:
/[Content_Types].xml;/_rels/.rels; /<file_path>/_rels/<filename>.rels (where <filename> is a file in the
package that is source of relationships and <file_path> is the path to that file).

e It is not mandatory to open the AASX format in any existing Office Open XML / Open Packaging
Conventions compatible office-application (e.g. Microsoft Office, LibreOffice), because the required
relationships and files for the different office “models” may not be present (e.g.
http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDocument ~ for “docx”
document).

7.5 Logical Model

As mentioned before, it is necessary to define a logical model for formats on top of Open Packaging Conventions.

Figure 127 defines the logical model for the AASX format. It is made of a set of relationship types (URI), their cardinality
(how many relationships of that type are possible) and the source of the relationship. In addition (not shown in Figure
127), a specific relationship instance has also a unique ID and a target resource (URI of a target file inside or outside the
package).

34 The currenty MIME-type is provisory and needs to be requested officially.

Package File Format for the Asset Administration Shell (AASX) | 171

Figure 127 Logical model for the AASX format®

(root)

ttp://schemas.openxmN

0..1h
Iformats.org/)

ttp://schemas.openxmN

0..1h
Iformats.org/)

http://schemas.openxm
Iformats.org/

0.. http://schemas.openxmN ttp://schemas.openxm
Iformats.org/) Iformats.org/

1 [nttp://admin-shell.io/ }

aasx/relationships/

I_I 1.*
http://admin-shell.io/ 0..thttp://fadmin-shell.io/
aasx/relationships/ aasx/relationships/
0. http://admin-shell.io/
\aasx/relationships/

The relationships for thumbnail, core-properties, digital-signatures (origin, signature and certificate) are defined by Open
Packaging Conventions, so no need to reinvent. The other relationships were specifically defined to support the Asset
Administration Shell specific files. Here a short description on each relationship® of Figure 127:

thumbnail — Optional. Required to define a thumbnail for that package (e.g. picture of the administrated
device). The thumbnail picture can be shown instead of the package’s icon based on the extension and/or
MIME type.

core-properties — Optional. There is a schema for describing the package through "core properties,"
which uses selected Dublin Core metadata elements in addition to some Open Packaging Conventions-
specific elements. The core-properties do not describe the Administration Shell, but the package itself.
Some elements of the core-properties may be similar/equal to elements of the Administration Shell. Some
core-properties are: Title, Subject, Creator, Keywords, Description, LastModifiedBy, Revision,
LastPrinted, Created, Modified, Category, Identifier, ContentType, Language, Version, ContentStatus.

digital-signature/origin, digital-signature/signature and digital-signature/certificate — Optional.
Required if you need to sign files and relationships inside the package. Their relationships basically target
files that contain the data on signatures (e.g. certificate, digests, ...). See the description later in this
document about digital signatures.

aasx-origin — Mandatory. Origin of the AASX specific relationships and files. From this origin one or
more AAS can be defined. The producer should not create any content in the aasx-origin file itself,
meaning that the file is empty or contains the the text “Intentionally empty”.As the Open Packaging
Conventions relationship model does not allow to target directories inside the ZIP, the alternative is to
create an empty file that serves as the entry-point for the AASX information (this is the same approach
as it is used for digital signatures).

aas-spec — at least one relationship of this type is mandatory. Targets the file that contains the
structure/specification of one or more AAS (aasenv), as defined in this document. Optionally, some of

35 Note that the logical model does not state anything about the format / content of the target files of relationships. This
will be addressed in the physical model.

3 To avoid the long names of the relationships, we will use the short name along the text.

172 | Package File Format for the Asset Administration Shell (AASX)

the specification can be “splitted” into separate files, but in any case, this aas-spec file is still mandatory
and contains at least the non-splittable information.

e aas-spec-split — Optional. This relationship will target a file containing a splittable part of the AAS
specification (aasenv). Some serialization formats allow that parts of the AAS sspecification can be
splitted into several files. Those files are then referenced by this relationship type, so that any consumer
of the AASX can "reassemble" the AAS information.

e aas-suppl — Optional. Targets any additional file, especially if it is referenced (not stored as blob) in the
data of an AAS (via File property).

Note: not all of the references inside the specification of an AAS may target files that are also stored inside the
AASX. Arelative URIs mentioned in the serialized files is an indication that the file is inside the AASX.

7.6 Physical Model

The physical model defines how the different files are stored in the package, based on Open Packaging Conventions and
how files are addressed in the relationships. As mentioned before, the physical package format is a ZIP file that can be
open and edit in any PKWARE/ZIP compatible application.

In order to utilize the identifiers of Administration Shell and SubModels, friendly names are required. The friendly name
of such entities is built by searching all characters of the identifier, which are not letters or digits and substituting them
with an underscore "_"

A feature of this physical and logical model is that the filename and location of those files can be customized (if associated
relationships have a correct URI to those files, and therefore can be used to locate the files according to the logical
structure). For example, one package producer might store an aas-spec file in /aasx/device.xml, the other one in /asset-
admin-shell/productX123.xml, but both use the same relationship type for that files. To have a more consistent approach
on the physical model, the following best-practice is defined for storing files inside the AASX package:

e Open Packaging Conventions related files should be stored according to the API that was used to
generate/manipulate the AASX package (it is not recommended to do this manually).

o Jaasx/ shall be the root folder for the AASX package specific information.
e /aasx/aasx-origin shall be the target of the relationship aasx-origin without content (empty file).

e /aasx/<aas-friendly-name>/ shall be the folder for storing all files for a specific AAS, where <aas-
friendly-name> is the friendly name of the AAS.

e /aasx/<aas-friendly-name>/<aas-friendly-name>.aas.<extension> shall be the target of a relationship
of type aas-spec, where <extension> is the extension based on the type of serialization (e.g. .xml, .json).

e /aasx/<aas-friendly-name>/<aas-friendly-name>.<view-idshort>.view.<extension> shall be the target
of a relationship of type aas-spec-split that contains a specific view definitions of an AAS. This is only
required if the view definitions aren’t defined in the target file of aas-spec.

o Jaasx/<aas-friendly-name>/<aas-friendly-name>.cdic.<extension> shall be the target of a relationship
of type aas-spec-split that contains the ConceptDictionary definition of an AAS. This is only required if
the ConceptDictionary isn’t defined in the target file of aas-spec.

e /aasx/<aas-friendly-name>/<aas-friendly-name>.secattrib.<extension> shall be the target of a
relationship of type aas-spec-split that contains the Security model of an AAS. This is only required if the
Security models isn’t defined in the target file of aas-spec.

e /aasx/<aas-friendly-name>/<submodel-friendly-name>/ shall be the folder to store files related to a
submodel of an AAS (targets of aas-suppl relationships that are referenced in that submodel and splits
containing submodel information). <submodel-friendly-name> is the friendly name of the submodel.

e /aasx/<aas-friendly-name>/<submodel-friendly-name>/<submodel-friendly-
name>.submodel.<extension> shall be the target of a relationship of type aas-spec-split that contains a
submodel definition of an AAS. This is only required if a submodel isn’t defined in the target file of aas-
spec.

e Those file names must only contain characters that can be used for file names.

Package File Format for the Asset Administration Shell (AASX) | 173

The conventions defined here shall not be used for other files. E.g. any other file in a submodel folder
shall not contain the substring “.submodel.” in its name.

Note that the format of the files targeted by the relationships aas-spec and aas-spec-split depend on the
serialization format that was used to generate them (e.g. xml, json, ...).

It is also possible to have different serialization formats of the same Administration Shell stored in the
same AASX. In this case, the different serialization formats can be stored in parallel with different
extension, different MIME type and different relationships. For example, Waterpump24634.aas.xml and
Waterpump24634.aas.json are stored in the same folder Waterpump24634, but are targets of different
relationships (different IDs) of the same relationship type aas-spec. Both are then the entry-point of
different source relationship branches (each one having its own .rels file, i.e.
Waterpump24634.aas.xml.rels and Waterpump24634.aas.json.rels).

To avoid duplication of data, it is possible to target the same file by different relationships (e.g. two
different relationships of type aas-suppl may have the same target file).

An example of a physical model for an AASX based on a sample product is shown in Figure 128. It shows the content of
the package listed in a tree view and one example mapping to the logical model as defined in Figure 127. The physical
structure is based on the best practice mentioned before. Note that in the example there is only one AAS in the package,
one submodel (programs) is stored in a separate file and the certificate is embedded into the signature file (so no need of
the additional relationship). It is also assumed in this example that the AAS specification files are serialized into XML.

Figure 128 Physical model for an AASX based on a sample product (left) and an example of mapping to the
logical model (right)

'Ts" Waterpump24634.aasx

r _rels

% rels
r aasx
’- _rels

%, aasx-origin.rels | 9f6dd5efr56f8g0gtk I

r Waterpump24634
’- s This is where the information of this relationship is

stored (relationshipfile of the source)

%, Waterpump24634.aas.xml.rels
’- Documentation

& Waterpump_handbook.pdf
’- Programs

%, Programs.submodel.xml e

“& xFb_4564.bin relationship target (http://www.admin-shell.io/]7
= xFb_7356.bin aasx/relationships/

%, Waterpump24634.aas.xml ——————————— L aas-spec-split

relationship type

ardiysuonyejes

aasx-origin relationship source
r digital-signature

’- _rels

%, origin.rels

origin
% signatures.xml
" [Content_Types].xml
", core-properties.xml

.4 Thumbnail.jpeg

It is possible to classify the files in a AASX package into the following types: 1) files that are referenced in the
relationships of the logical model and must match the target URI inside each relationship, 2) “Files that aren’t source or
target of any relationship (not allowed as they do not follow the logical model defined in this document and might impact
some aspects regarding digital signatures and its verification) and 3) Open Packaging Conventions specific files that
aren’t associated to the logical model (relationships):

174 | Package File Format for the Asset Administration Shell (AASX)

o /[Content_Types].xml — contains a list of extensions and MIME type of all file types inside the package.
The element override can specify the MIME type for specific files independent of the extension. The
MIME type of AAS-specific files depends on the type of serialization that was used to generate the
content of the files (e.g. if XML was used for some files, then the MIME type "text/xml" together with
the used file extensions must appear in [Content_Types].xml. If there is no specific MIME type for some
files, then "application/octet-stream" shall be used.

e /_rels/.rels — contains all relationships coming from the source “root” (which is the package itself),
binding the source with a target (the URI of an internal file or external resource). For example, for the
thumbnail relationship it looks like this:

e <Relationship Type = "http://schemas.openxmlformats.org/package/2006/
relationships/metadata/thumbnail” Target = "/Thumbnail.jpeg" Id = "Rc76d59d18bd7440f" />

e This means that the target data for this thumbnail relationship is stored in /Thumbnail.jpeg.

o /<file_path>/_ rels/<filename>.rels — non-root relationships are stored in those files. E.g. the relationship
based on type aas-spec-split starting from the source file Waterpump24634.aas.xml are stored in file
faasx/Waterpump24634/_rels/Waterpump24634.aas.xml.rels.

An AASX can be generated by using different means:

e Manually by adding files (changing files) to (of) a Zip file. This requires a deep understanding of the
Open Packaging Conventions format, because adding just a file to the package with an ZIP editor isn’t
enough (i.e. need to edit the [Content_Types].xml and some of the .rels files too)

e Programmatically generating and changing the package format (e.g. using .NET System.lO.Packaging).
This will typically avoid the errors that can be done when creating manually the package. In addition, the
Open Packaging Conventions specific procedures, the logical, physical and security model defined for
the derived AASX must be considered.

7.7 Digital Signatures

Essentially the digital signature of an electronic document (in this case the files and relationships inside the container)
aims to fulfil the following requirements [29]:

e that the recipient can verify the identity of the sender (authenticity);
e that the sender cannot deny that he signed a document (non-repudiation);
o that the recipient is unable to invent or modify a document signed by someone else (integrity).

A digital signature does not "lock" a document or cause it to become encrypted (although it may already be encrypted).
Document content remains unchanged after being signed. Digital signatures do not prevent signed content from being
viewed by unintended consumers.

A digital signing feature is already provided by the Open Packaging Conventions specification [27]. This signing
framework for packages uses the XML Digital Signature Standard, as defined in the W3C Recommendation XML-
Signature Syntax and Processing. This recommendation specifies the XML syntax and processing rules for producing and
storing digital signatures.

e The package files defined for the signing framework are the origin file, the signature file(s), and the
certificate file(s).

o digital-signature/origin file — starting point for navigating through the signatures in a package. The
origin file is targeted from the package root using the digital signature origin relationship (as shown in
the logical model in Figure 127). Multiple signature files may be targeted from the origin file. If there are
no signatures in the package, the origin file will not be present.

o digital-signature/signature file(s) — contain markup defined in the W3C Digital Signature standard as
well as in the packaging namespace. The files are targeted from the origin file with the signature
relationship (as shown in the logical model in Figure 127).

o digital-signature/certificate file(s) — The X.509 certificate required for identifying the signer, if placed
in the package, may be embedded within a signature file, or stored in a separate certificate file. The

Package File Format for the Asset Administration Shell (AASX) | 175

optional certificate file is targeted from a signature file with the certificate relationship. The certificate
file can be shared between multiple signature files.

In the package, individual files and relationships can be independently signed’, meaning that it is possible to select which
files and relationships need a signature and which certificate to be used to sign. When the relationships file (.rels) is signed
as a whole, all the relationships defined in that file are signed too. Moreover, it is possible to use more than one certificate
to sign files and relationships.

The Open Packaging Conventions signing framework is quite flexible, and consequently some considerations must be
taken, especially when defining policies. The Open Packaging Conventions specification does not define policies, only
mentions that “designers that include digital signatures should define signature policies that are meaningful to their users”.
Besides guaranteeing authenticity, non-repudiation and integrity, digital signatures shall also be used to define policies
that are intended by the signers® (typically the package producers) or in agreement with the package consumers (e.g.
consumer will only accept package with signed content). The decisions taken during the signature process impact which
consequent operations can be verified (e.g. allowing post-modification of a file, adding new relationships...).

There is no need of a separate file in the package about policies, because these policies information can be retrieved on
how signing is performed. Signing a specific file in the package will implicitly express the intention of the signer on what
is or isn’t allowed with that file and related files (in case of relationship files). For instance, signing the aasx-origin
relationship file will not permit adding new AAS to the package. If new AAS are added anyway, this will invalidate the
original signature and nobody can blame the original signer for that change.

A package producer shall follow a digital signing policy based on the following options:

1. Sign nothing
2. Sign everything and thus following policy “No change allowed to the package” of Table 28.
3. Custom signing according to one or more policies of Table 28.

The package consumer may follow a validation process based on the policy of the signer(s) or an internal verification of
the package according to its own policies. The signature policy defined by the signer(s) does not directly tell that the
consumer should validate the package, but tells how it is intended by the signer(s). Nevertheless, validation might be
mandatory for joint applications where several parties (package producers and consumers) need to follow the same rules.
The following process for validation3® for AASX packages is established:

1. The validation process must start by checking that the consumed package is according to the Open Packaging
Conventions specification and that its implements the logical model according to the AASX definition.
Optionally it may analyse if the physical model is according to the best-practice for storing files inside the AASX
package.

2. Files that aren’t source or target of any relationship, aren’t allowed (besides the Open Packaging Conventions
specific files).

3. Afterthese steps, the existing certificates that were used to sign the content of the package must valid and trusted.

4. All signed content must then be verified and valid against the provided certificate information.

5. The signed content will also reveal a set of policies*® defined by the signers or defined in agreement with the
several parties (package producers and consumers), that must be followed by the consumer when changing the
package without invalidating it (see Table 28).

6. A package is only valid, if all previous steps are performed successfully. Any change done to the package by the
consumer requires a revalidation of the package.

37 Individual files and relationships can be signed, but not the full package. This is a question of definition, but signing
the full package could mean to sign all files inside the package (except the signature file).

38 The policies described here are for the AASX package and what can be changed. It does not define any policy e.g. on
how to use an AAS.

3 Validation. The assurance that a product, service, or system meets the needs of the customer and other identified
stakeholders. It often involves acceptance and suitability with external customers. Contrast with verification, which is
often an internal process. (Adapted from The PMBOK guide, a standard adopted by IEEE, 4" edition)

40 These policies are for the AASX package and not for the AAS itself.

176 | Package File Format for the Asset Administration Shell (AASX)

Any of the steps mentioned in the validation can be performed independently without the other ones, but doing so, it is
not considered as validation (e.g. internal verification process by a consumer may only require to check if the package is
according to the Open Packaging Conventions and implementing the AASX logical model, without checking the

signatures).

Table 28 Set of possible policies based on how package files are signed, how to enable a given policy and the
consequences of a policy

General

Policy

No change allowed to the package

How to enable the policy

Sign all files and relationships
in the package (except for
[Content_Types].xml* and the
signature file(s))

Consequence

Invalidates any change in the
signed files. New files that are
added afterwards do not have a
signature and aren’t mentioned in
any relationship, thus invalidating
those files.

No change allowed to the content of
file X or deletion of file X

Sign file X inside the package
(e.g. AAS, a submodel file, any
file, ...)

Invalidates tampering the content
or deletion of file X.

No change allowed to a relationship
X

Sign relationship X

Invalidates tampering or deletion
of the relationship entry (i.e. the
relationship type, id and target
URI) in the corresponding
relationship file. This will not
invalidate the content of source
and target files of a relationship,
once tampered.

No change allowed to any
relationships that have source file X

Sign relationship file X (X.rels)

Invalidates adding, changing or
removing any relationship
mentioned in that relationship
file. This will also invalidate the
addition of new files that would
otherwise being target in that
relationship file. For example, if
there is no relationship for the
thumbnail in the root relationship
file before the signing of that file,
a posterior addition of thumbnail
relationship is then invalidated.

Enable digital signatures

The digital-signature/origin
relationship must be signed
(alternatively, sign the
complete root relationship file
that contains this relationship)

Will enable digital signatures (but
does not specify the rules for
signing, e.g. if new signatures can
be added).

Enable core-properties

The metadata/core-properties
relationship must be signed
(alternatively, sign the

Will enable the core-properties of
the package.

41 When reading an AASX package, do not rely on the trustability of the file [Content_Types}.xml, as it was not possible

to sign this file.

Package File Format for the Asset Administration Shell (AASX) | 177

complete root relationship file
that contains this relationship)

Enable thumbnail

The metadata/thumbnail
relationship must be signed
(alternatively, sign the
complete root relationship file
that contains this relationship)

Will enable the thumbnail for the
package.

Forbid counter-signatures (adding|Sign the signature origin | Invalidates counter-signatures.
new signatures) relationship file
Forbid modifying existing |Sign object inside the|Invalidates any change in the
file/relationship digests for | corresponding signature file | digests and addition of new file
signatures based on a certificate that contains all the | digests.

file/relationship digests
Enable AASX specification The aasx-origin relationship |Will ~ enable the AASX

must be signed (alternatively,
sign the complete root
relationship file that contains
this relationship).

specification on top of the Open
Packaging Conventions.

Forbid adding a new AAS or
removing an existing AAS.

Sign the
relationship file

aasx-origin

Invalidates adding or removing
AAS.

Forbid adding a new splittable parts
or removing an existing one to/from
an AAS

Sign the aas-spec relationship
file

Invalidates adding or removing of
splittable parts to/from an AAS.

Forbid adding a new supplementary
file or removing an existing one

Sign the aas-spec relationship
file

Invalidates adding or removing of
extra files to/from an AAS.

to/from an AAS

IAASX-specific

7.8 Encryption

The Open Packaging Conventions specification (ISO/IEC 29500-2:2012) mentions that “ZIP-based packages shall not
include encryption as described in the ZIP specification. Package implementers shall enforce this restriction. [M3.9]7%.
However, an Open Packaging Conventions package may be encrypted with other means and some applications using this
package format as the basis for a more specific format, may use encryption during interchange or DRM for distribution.
[24]

An example is the Office Document Cryptography Structure (MS-OFFCRYPTO) used by derivate office formats. Some
used technologies may be covered by Patents from Microsoft and therefore it isn’t recommended for the AASX format.
Digital Rights Management (DRM) can also be used to encrypt content elements in a package with specific access rights
granted to authorize users (see the implementation in the system.io.packaging namespace [31]).

Regarding encryption and confidentiality, the following rules shall be followed:

1. Decide if there is a need of including confidential content in a package. If there is no reason, then the confidential
content should not be included.

42 The reason for this might be related to the transparency requirement for the package format as well as license
requirements of PKWARE. For the ISO/IEC 21320-1 (Document Container File: Core) there is the following statement:
“Encryption of individual files and of the central directory is prohibited. Hence this profile of ZIP_PK is more transparent
than its parent format.” [30]

178 | Package File Format for the Asset Administration Shell (AASX)

2. If encryption is desired for a temporary communication act (e.g. e-mail exchange, ...) or if a AASX needs to be
stored somewhere so that it can be opened later by the same entity, then encryption methods can be used for that
specific mean (e.g. use BitLocker when storing the AASX in Windows-based systems that support it, use
S/MIME for exchanging encrypted e-mails between entities, etc.).

3. For all other use cases*® where encryption is required for some or all of the content of the AASX:

e Encryption methods can be used for individual files in the AASX package, as soon as the “encrypted”
version replaces the original file in the package, the MIME type of the encryption format is known, and
the MIME type must be listed in the [Content-Type].xml. The relationships as defined in this document
remain the same, whenever content is encrypted or not. Note that Open Packaging Conventions related
files as well as relationship files shall not be encrypted, and digital signing must be performed after
encryption. One example of an encryption standard is the Secure MIME (S/MIME), where the
encrypted content should be stored in application/pkcs7-mime format as defined in RFC 5652 and use
the file extension *.p7m.

e Besides encrypting the content of the package (individual files) it is possible to encrypt the full package
(e.g. also using Secure MIME and saving the encrypted package in application/pkcs7-mime file format).
In this case, the signature of the content of the package must be done before the encryption.

43 A use case could be to encrypt a submodel and only provide the access to the unencrypted data after paying a fee.

8 Tools for the Asset Administration Shell

180 | Tools for the Asset Administration Shell

8.1 Open Source Tools

This clause gives some hints with respect to available open source tools supporting the creation and operating of an asset
administration shell. It is not necessarily complete. There might be other implementations as well.

The aasx package explorer is an open source browser and editor for creating asset administration shells as .aasx packages
[40]. The aasx package explorer supports the xml and JSON serialization of the asset administration shell. Additionally
export formats for AutomationML or server generation for OPC UA are provided. But also additional export formats like
BMEcat etc. are supported. Since it is an open source implementation new features are added continuosly. On [41] also
additional information and code in the context of the asset administration shell can be found.

BaSyx, a software platform, is another open source impelementation for the asset administration shell and provides
software developement Kits for C++, C# and Java [42].

9 Summary and Outlook

182 | Summary and Outlook

In this document a metamodel for the structural viewpoint of the Asset Administration Shell is defined using UML. It
covers security aspects as well as features for handling composite 14.0 Components. Data specification templates for
defining concept descriptions for properties and physical units are provided.

Several serilializations and mappings are offered:

e XML and JSON for Exchange between partners via exchange format .aasx
e RDF for reasoning

e AutomationML for the engineering phase

e OPC UA for the operation phase

Additional parts of the document series cover:

o Interfaces and API for using a single AAS information model described in Part 1 (access, modify, query and
execute information and active functionality)

e The infrastructure, which hosts and interconnects multiple Asset Administration Shells together. It implements
registry, discovery services, endpoint handling and more.

Annex

184 | ANNEX

Annex A. Concepts of the Administration Shell

i. General

In this clause, a general information is given about sources of information and relevant concepts for the Asset
Administration Shell. Some of these concepts are explained in a general manner. Some concepts are update in order to
reflect actual design decisions. No new concepts are introduced. Thus, the clause can be taken as a fully informative
(annex) to the specification of the Administration Shell.

ii. Relevant Sources and Documents

The following documents were used to identify requirements and concepts for the Administration Shell:

e Implementation strategy of Plattform Industrie 4.0 [1][2]

e Aspects of the research roadmap in application scenarios [7]

e Continuation of the application scenarios [8]

e Structure of the Administration Shell [4] [18]

o Examples for the Administration Shell of the Industrie 4.0 Components [6]
e Technical Overview “Secure identities” [9]

e Security of the Administration Shell [14]

e Relationships between 14.0 components — Composite components and smart production [12]

Note: The global Industrie 4.0 glossary can be found at: https://www.plattform-
i40.de/Pl140/Navigation/EN/Industrie40/Glossary/glossary.html

Note: The online library of the Plattform Industrie 4.0 can be found at: https://www.plattform-
i40.de/SiteGlobals/P140/Forms/Listen/Downloads/EN/Downloads_Formular.html?cl2Categories_Typ_name=
veroeffentlichung

iii. Basic concepts for Industrie 4.0

Industrie 4.0 describes concepts and definitions for the domain of smart manufacturing. For Industrie 4.0, the term asset,
being any "object which has a value for an organization”, is of central importance [2] [23]. Thus, assets in Industrie 4.0
can take almost any form, for example be a production system, a product, a software installation, intellectual properties
or even human resources.

According [23], the "reference architecture model Industry 4.0 (RAMI4.0) provides a structured view of the main
elements of an asset using a level model consisting of three axes [...]. Complex interrelationships can thus be broken down
into smaller, more manageable sections by combining all three axes at each point in the asset’s life to represent each
relevant aspect.”

Assets shall have a logical representation in the "information world", for example shall be managed by IT-systems. Thus,
an asset has to be precisely identified as an entity, shall have a "specific state within its life (at least a type or instance)",
shall have communication capabilities, shall be represented by means of information and shall be able to provide technical
functionality [23]. This logical representation of an asset is called Administration Shell [4]. The combination of asset and
Administration Shell forms the so-called 14.0 Component. In international papers [18], the term smart manufacturing
replaces the term Industrie 4.0.

For the large variety of assets in Industrie 4.0, the Administration Shell allows handling of these assets in the information
world in always the same manner. This reduces complexity and allows for scalability. Additional motivation can be found

in [2] [4] [7] [8]-

ANNEX | 185

Figure 129 Important concepts of Industrie 4.0 attached to the asset [2] [23]. 14.0 Component to be formed by
Administration Shell and asset.

functionality of AAS exposed by
an application programming
interface (API)

14.0 Component

entirety of information
of AAS

communication
ability of asset

Asset
(physical world)

type/ instance
of asset

assetas uniquely
identified entity

Source: ZVEISG Modelle & Standards, basedon VDI VDE FA GMA7.21

iv. The Concept of Properties

According [20], the "IEC 61360 series provides a framework and an information model for product dictionaries. The
concept of product type is represented by 'classes' and the product characteristics are represented by ‘properties™

Such properties are standardized data elements. The definitions of such properties can be found in a range of repositories,
such as IEC CDD (common data dictionary) or eCl@ss. The definition of a property (aka standardized data element type,
property type) associates a worldwide unique identifier with a definition, which is a set of well-defined attributes. Relevant
attributes for the Administration Shell are, amongst other, the preferred name, the symbol, the unit of measure and a
human-readable textual definition of the property.

186 | ANNEX

Figure 130 Exemplary definition of a property in the IEC CDD

Code: 0127201626838 ACE424
Vergion: 00

Revision: 01

IRDI: 0112020162683 ACE424#001
Preferred name: rated current

SYnonymous name:

Symbol: In

Synonymous symbol:

Short name:

Definition: maximum uninterrupted current equal to the conventional free-air thermal current (Ith)
Note:

Remark:

Primary unit: A

Alternative units:

Lewvel:

Data type: LEVEL{MAX) OF REAL_MEASURE_TYPE

The instantiation of such definition (just 'property’, property instance) typically associates a value to the property. By this
mechanism, semantically well-defined information can be conveyed by the Administration Shell.

Note: Industrie 4.0 and smart manufacturing in general will require many properties which are beyond the current
scope of IEC CDD, eCl@ss or other repositories. It is expected, that these sets of properties will be
introduced, as more and more domains are modelled and standardized (next clause).

v. The Concept of Submodels

"The Administration Shell is the standardized digital representation of the asset, corner stone of the interoperability
between the applications managing the manufacturing systems" [18]. Thus, it needs to provide a minimal but sufficient
description according to the different application scenarios in Industrie 4.0 [7] [8]. Many different (international)
standards, consortium specifications and manufacturer specifications can already contribute to this description [18].

As the figure shows, information from different many different technical domains could be associated with a respective
asset and thus, many different properties are required to be represented in Administration Shells of future 14.0
Components. In order to manage these complex set of information, submodels provide a separation of concern.

ANNEX | 187

Figure 131 Examples of different domains providing properties for submodels of the Administration Shell

Administration shell, exemplary

Identification Drilling

Communication Milling

Engineering Deep drawing

Configuration Clamping
Safety (SIL) Welding
Security (SL Wet painting

Lifecycle status Assembling

c
S
58 Engneering] | [Deepdrawing |
©c O
o <
> 8 Configuration] [Clamping |
o ©
S G
2 0°
2 2 [safetyS)][Weldng |
oEe
= ___secuiy 5D [Wetpaning |
S
Z 8
<2 ___Lifecydestatus__] [Assembing |
(0]

Energy efficienc Inspecting

Condition monitoring Process control

Further Further

Source: ZVEISG Modelle & Standards

The Administration Shell is thus made up of a series of submodels [4]. These represent different aspects of the asset
concerned; for example, they may contain a description relating to safety or security [14] but could also outline various
process capabilities such as drilling or installation [6].

From the perspective of interoperability, the aim is to standardise only a single submodel for each aspect / technical
domain. For example, it will thus be possible to find a drilling machine by searching for an Administration Shell
containing a submodel “Drilling” with appropriate properties. For communication between different 14.0 components,
certain properties can then be assumed to exist. In an example like this, a second submodel, “energy efficiency”, could
then ensure that the drilling machine is able to cut its electricity consumption when it is not in operation.

Note: side benefit of the Administration Shell will be to simplify the update of properties from product design (and
in particular system design) tools, update of properties from real data collected in the instances of assets,
improve traceability of assets along life cycle and help certify assets from data.

vi. Basic Structure of the Asset Administration Shell

The document on the Structure of the Asset Administration Shell [4] [18] presented a rough, logical view of the
AssetAdministration Shell’s structure. The AssetAdministration Shell — shown in blue Il in the following figure —
comprises different sets of information. Both, the asset and the Administration Shell are identified by a globally unique
identifier. It comprises a number of submodels for a characterisation of the AssetAdministration Shell.

188 | ANNEX

Figure 132 Basic structure of the AssetAdministration Shell

Accesson information ‘ and functionalities

Administration shell

Submodel 1e.g. energy efficiency
Property 1.1

Property 1.1.1.1

ek ./ _ _
-—

Property 1.1.1.3

Administration

shell

Submodel 2 e.g. positioning mode
Property 2.1

Asset, e.g.
Electrical axis

N

Property 2.1.1
Property 2.1.1.1
Property 2.1.1.2

Property 2.1.2

Submodel 3e.g. CADmodel
Property 3.1

Property 3.1.2 —

Strict, coherentformat f Different, complementary data
formats
Runtime data
(from the Asset) Source: ZVEI SG Modelle & Standards

Properties, data and functions will also contain information which not every partner within a value-added network or even
within an organisational unit should be able to access or whose integrity and availability should be guaranteed. Therefore
the structure of the Administration Shell shall be able to handle aspects such as access protection, visibility, identity and
rights management, confidentiality and integrity. Information security needs to be respected and has to be aligned with
an overall security concept. Implementation of security must go together with the implementation of other components
of an overall system.

Each submodel contains a structured quantity of properties that can refer to data and functions. A standardized format
based on IEC 61360-1/ ISO 13584-42 is envisaged for the properties. Thus, property value definition shall follow the
same principles as also 1ISO 29002-10 and IEC 62832-2. Data and functions may be available in various, complementary
formats.

The properties of all the submodels therefore result in a constantly readable directory of the key information of the
Administration Shell and thus of the 14.0 component. To enable binding semantics, Administration Shells, assets,
submodels and properties must all be clearly identified. Permitted global identifiers are IRDI (e.g. in ISO TS 29002-5,
eCl@ss and IEC Common Data Dictionaries) and URIs (Unique Resource Identifiers, e.g. for ontologies).

It should be possible to filter elements of the Administration Shell or submodels according to different given views (—
Example C.4 in [18]). This facilitates different perspectives or use-cases for the application of Administration Shell's
information.

ANNEX | 189

vil.

Shell.

The following requirements are taken from the document “Implementation strategy of Plattform Industrie 4.0” [2]. They
are marked “STRAT”. The "Tracking" column validates the requirements by linking to features of the UML metamodel

Requirements

This section collects the requirements from various documents that have impact on the specific structure of the
Administration Shell. These requirements serve as input for the specific description of the structures of the Administration

or this document in general.

ID Requirement Tracking
way that connections between any end point (Industrie 4.0 | part of the document series.
components) are possible. The Industrie 4.0 components and their . .

. Common semantic model realized by
contents are to follow a common semantic model. . -
domain specific submodels
(HasSemantics/ ConceptDescription
and by Relations)

STRAT#2 It must be possible to define the concept of an Industrie 4.0 | Content-wise, many different
component in such a way that it can meet requirements with different | submodels possible.
focal areas, i. e. “office floor” or “shop floor”.

STRAT#3 Industrie 4.0 compliant communication must be performed in such a | Metamodel and information
way that the data of a virtual representation of an Industrie 4.0 | representation independent of any
component can be kept either in the object itself or in a (higher level) | deployment scenario.

IT system.

STRAT#4 In the case of a virtual representation of an 14.0 component in a | Integrity part of security approach.
higher-level system, an integrity association must be ensured
between the asset and its representation.

STRAT#5 A suitable reference model must be established to describe how a | Scope of upcoming part of the
higher level IT system can make the Administration Shell available | document series; not scope of this
in an Industrie 4.0 compliant manner (SOA approach, delegation | part.
principle).

STRAT#6 A description is required of how the Administration Shell can be | Hierarchica