
German Electrical and Electronic Manufacturers’ Association

Introduction to the combined
Application of Agile & Safety

in Automotive Software
Development

Imprint
Introduction to the combined Application of Agile & Safety in Automotive Software Development

Publisher:
ZVEI - German Electrical and Electronic
Manufacturers’ Association
Electronic Components and Systems and
PCB and Electronic Systems Divisions
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-276
Fax: +49 69 6302-407
E-mail: zvei-be@zvei.org
www.zvei.org

Responsible:
Dr. Stefan Gutschling, ZVEI

Februar 2021

While every care has been taken to ensure the accuracy of this document, ZVEI assumes no liability for the
content. All rights reserved. This applies in particular to the storage, reproduction, distribution and transla-
tion of this publication.

1	 About this Document	 4
1.1	 Motivation	 4
1.2	 Target Audience	 4
1.3	 Scope	 4
1.4	 Prerequisites for Combining Agile & Safety	 4
2.1	 Agile Values, Principles, Methods and Practices	 5
2.2	 Possible Misunderstandings Regarding “Agile Software Development“	 5

2	 Introduction to Scrum and ISO 26262	 5
2.3	 Scrum	 6
2.4	 Agile Scaling	 6
2.5	 Functional Safety	 7
2.6	 ISO 26262 – Functional Safety of Road Vehicles	 7
2.7	 Interrelationship between Scrum and ISO 26262	 8

3	 Workflow	 10
3.1	 Scrum Workflow	 10
3.2	 ISO 26262 Safety Life Cycle	 10
3.3	 Challenges	 11
3.4	 Solutions	 12
4.1	 Scrum Roles	 13
4.2	 ISO 26262 Roles	 13
4.3	 Challenges	 13
4.4	 Solutions	 13

4	 Roles	 13

5	 Artifacts	 16
5.1	 Scrum Artifacts	 16
5.2	 ISO 26262 Artifacts	 16
5.3	 Challenges	 16
5.4	 Solutions	 16
6.1	 Refactoring	 17
6.2	 Pair Programming	 17
6.3	 Continuous Integration	 17

6	 Other Agile Practices	 17
6.4	 User Stories	 18

7	 Recommendations for Audits/Assessments	 19

8	 References to other Documents	 20

9	 Participating Companies	 21

Table of Contents

4

1	 About this Document

1.1	 Motivation
The future value of automobiles will undoubtedly be

created through software. Whereas software contrib-

utes about 10 percent of the added value today, it

is expected to rise to 40 percent by 2020 (Morgan

Stanley Research, 2016). Software and the relevant

electronic control units are paramount for enabling

trends in the automotive industry, such as auto-

mated driving, connected car and electric mobility.

With an average modern high-end car compromising

up to 100 million lines of code, managing software

development efficiently, while adhering to all safety

related issues have grown highly in importance.

Traditional methods applied for organizing software

development (e.g. planning the whole project from

start to end) may not provide the flexibility needed

for handling innovation.

In contrast, agile principles can stimulate efficient

organization and planning of software development,

also in a functional safety context.

1.2	 Target Audience
This document targets people with experience in

either functional safety or agile software devel-

opment in the automotive industry. Furthermore,

this document can be of relevance to anybody who

is familiar with quality management systems. It is

important to note, that a functional quality manage-

ment system must already be established as a pre-

requisite for an agile & safety application.

1.3	 Scope
This document describes how agile practices can be

combined with the functional safety standard ISO

26262 when developing safety-related automotive

embedded software. As such, the discussed ISO

26262 requirements are primarily focused on part 2

“Safety Management” and considerations on part 6

“Product Development at the Software Level”, part 8

on “Supporting Processes” and part 9 on “ASIL-ori-

ented and Safety-oriented Analyses”. Scrum, its

workflow and roles, will be detailed as an agile

method in combining agile with safety due care.

In this document, we will focus on software develop-

ment, knowing that an already large and increasing

part of function development is data-driven.

ISO 26262 only mentions the handling of configu-

ration and calibration data quite briefly and Scrum

does not describe data handling approaches at all.

Also, agile system development as well as security

aspects will also not be discussed here. As the impor-

tance of both areas is expected to grow, they may be

included in future considerations of combining agile

and safety.

1.4	 Prerequisites for Combining
Agile & Safety
For combining agile and safety in the institution

of question, two prerequisites must be met for the

application to be suitable.

1.	 A suitable quality management system must

have already been established within the

institution. In an automotive context, ASPICE

Level 2 is an appropriate reference for process

maturity for software development.

2.	 If agile methods is to be introduced in an

organizational unit that already develops

safety-related software, a suitable functional

safety management system and development

and engineering approach for safety-related

software must have already been established

(e.g. suitably performed process, method and

tool enhancement regarding development of

safety-related embedded software in accord-

ance with the applicable ASIL).

Furthermore, it is highly recommended that all rel-

evant employees either have experience with both

function safety and agile methods

5

2	 Introduction to Scrum and ISO 26262

2.1	 Agile Values, Principles, Meth-
ods and Practices
The term agile was popularized by the Manifesto for

Agile Software Development by a team of seventeen

software developers in 2001. As mentioned earlier,

motivation for adaptive software development arose

from difficult and cost-intensive solutions when

faced with spontaneous changes and requirement.

The agile manifesto outlines four fundamental val-

ues and complements those with twelve additional

principles.

Values and Principles

The agile manifesto is based on the following four

core values:

1.	 Individuals and interactions over processes and

tools.

2.	 Working software over comprehensive docu-

mentation.

3.	 Customer collaboration over contract negoti-

ation.

4.	 Responding to change over following a plan.

The four core values are supplemented by twelve

principles that offer further clarification on agile

practices:

1.	 Customer satisfaction by early and continuous

delivery of valuable software.

2.	 Welcome changing requirements, even in late

development.

3.	 Working software is delivered frequently (weeks

rather than months).

4.	 Close, daily cooperation between business

people and developers.

5.	 Projects are built around motivated individuals,

who should be trusted.

6.	 Face-to-face conversation is the best form of

communication (co-location).

7.	 Working software is the principal measure of

progress.

8.	 Sustainable development, able to maintain a

constant pace.

9.	 Continuous attention to technical excellence

and good design.

10.	Simplicity – the art of maximizing the amount

of work not done – is essential.

11.	Self-organizing teams.

12.	Regular adaptation to changing circumstance.

Agile Methods

Most agile methods are derived in alignment with

the values and principles of the manifesto for agile

software development. The agile methods Scrum and

Kanban are nowadays the most commonly known.

This document will discuss Scrum, its workflow and

application in a safety context in detail.

Agile Practices

Agile practices are descriptors of best practices

that support the implementation of agile software

development. These can cover various areas such

as requirements, modelling, coding and testing. In

combination, these agile practices enable the imple-

mentation of the different agile methods. Due to the

large number of different agile practices, a selection

of them are outlined in this document and will be

discussed in detail in chapter 6:

•	 Refactoring

•	 Pair programming

•	 Test driven development

•	 Continuous integration

•	 User stories

2.2	 Possible Misunderstandings
Regarding “Agile Software Develop-
ment“
Parallel to the comprehensive agile methods and

practices, it is not uncommon that some agile

concepts are vaguely understood or even misinter-

preted. Some misunderstandings are cleared up in

this section.

“Agile means that you don´t have to follow any

processes.“ The application of agile development

practices in automotive requires suitable develop-

ment processes that are well-defined and monitored

strictly. In order to enable agility, it should be pos-

sible to improve them easily and quickly. The pro-

cesses should be defined in such a way that all teams

are able to adapt and improve their individual way

of working as long as no other teams are concerned.

6

„Agile only plans short-term.“ The combination of a

rough long-term and a detailed short-term planning

provides the necessary outlook just like traditional

planning but also reduces waste in case of plan

changes.

„Agile needs no documentation.“ Documentation

is reduced to the necessary minimum, e.g. for ena-

bling maintenance and customer guidance. Docu-

mentation intended just for short-term knowledge

transfer is replaced by close human interaction.

„Agile has no automotive application.“ All subject

matter activities necessary for compliance with

quality and safety standards can be included like

all other tasks. In fact, quality and safety can be

improved by an agile working mode, e.g. because

suitably applied agile approaches can ensure a con-

stantly high-quality level and usually supports early

verifi	cation	or	even	validation.

„Agile can’t handle unforeseen requirement

changes.“ During an implementation iteration,

requirements should not be changed, but agile prac-

tices enable very late requirement changes without

rework. This enables fast adaptation to changed

market needs.

2.3 Scrum
Scrum is a management approach to support the

management of a cross-functional team, especially

in an environment for software development. Jeff

Sutherland and Ken Schwaber, inventors of the

Scrum development management process, were

determined to facilitate development teams to

deliver working software within few weeks. To ena-

ble this objective, their management framework

Scrum	defi	nes	three	distinct	roles	and	describes	an	

iterative, incremental development process (https://

www.scrum.org/resources/scrum-guide). As an agile

method, Scrum is primarily an attitude towards

relationships between employees, managers and

customers.	This	attitude	is	also	refl	ected	in	the	ter-

minology of Scrum, with its origins being borrowed

from rugby. In rugby, Scrum describes the situation

when the ball is introduced into the play. Players

from both teams are packed closely together in a cir-

cular formation, attempting to gain as much ground

as possible. Translated to the management frame-

work, it is supposed to symbolize the coherence of

the Scrum team and the adherence to rigid roles

and	processes.	The	Scrum	workfl	ow	and	its	roles	are	

described in detail in the following chapters.

2.4 Agile Scaling
Agile	practices	and	their	benefi	ts	have	traditionally	

been enjoyed by small, co-located teams, as agile

practices were originally designed for a small team

size. To leverage these good results in larger organi-

zations and more complex environments, agile prac-

tices must be scaled. To meet challenges, including

the integrating of non-development activities, dif-

ferent agile scaling frameworks have been proposed

by experts. These agile scaling frameworks are

applied to large projects with multiple cross-func-

tional teams. In the automotive industry the most

commonly used frameworks are LeSS and SAFe.

Figure 1: LeSS overview diagram (source: The LeSS Company B.V.)

7

2.5 Functional Safety
The topics of safety and risk have been growing in

importance in the public eye, as the number of elec-

trical, electronic and programmable systems have

been increasing exponentially to satisfy the demand

for	more	automated	and	electrifi	ed	 functionalities.	

These range from essential vehicle functions such

as steer-by-wire and brake-by-wire to more complex

features such as connected car and highly auto-

mated driving. Hazards resulting from malfunction-

ing behavior of E/E systems caused by contained

hard-	and	software,	fall	under	the	defi	nition	of	func-

tional safety.

To warrant functionally safe products from a legal

perspective, product development and its related

safety aspects are expected to be developed accord-

ing to state of the art. For instance, under the Ger-

man product liability act the following is mandatory:

“The duty of replacement by the manufacturer is

eliminated only, if the error could not have been

detected according to state of the art in science and

technology at the time of bringing the device into

market” (Product Liability Act, §1 Cl. 2, Cypher 5).

State	of	the	art	in	science	and	technology	is	defi	ned	

by established standards, current products on the

market and other literature, such as papers and

publications.

2.6 ISO 26262 – Functional Safety
of Road Vehicles
To meet functional safety requirements and develop

according to state of the art, it is reasonable to

develop according to established international

standards. These serve as proper basis for argument

during product liability cases by providing evidence

that all reasonable functional safety objectives were

satisfi	ed.	 ISO	 26262	 is	 an	 international	 standard,	

which covers the functional safety of electrical and

electronic systems of series production road vehicles.

ISO 26262 includes guidance to mitigate risks from

systematic failures and random hardware failures by

providing appropriate requirements and processes.

ISO 26262 provides an automotive safety life cycle

by addressing the safety-related aspects of devel-

opment activities and work product and an auto-

motive-specifi	c	 risk-based	 approach	 to	 determine	

integrity levels. These integrity levels are referred

to as Automotive Safety Integrity Levels (ASIL). ASILs

are used to specify applicable requirements of ISO

26262 to avoid unreasonable residual risk. These

are further supplemented by requirements for ver-

ifi	cation,	 validation	 and	 confi	rmation	 measures	 to	

ensure	a	suffi	cient	level	of	safety.

Figure	2:	Full	SAFe	confi	guration	(source:	©Scaled	Agile,	Inc.)

8

Figure 3 below shows the structure of ISO 26262. It

consists of twelve parts and is based upon a V-model

as a reference process model for the different phases

of product development. The “V” represents the

interconnection between parts 3, 4, 5, 6, 7 and 12.

For application of agile software development

approaches, part 2 on “Management of functional

safety”, “part 6 on ‘Product development at the soft-

ware level”, part 8 on “Supporting processes”, and

part 9 on “ASIL-oriented and safety-oriented analy-

ses” are of primary relevance.

2.7 Interrelationship between
Scrum and ISO 26262
ISO 26262 mentions Automotive SPICE® (ASPICE) as

a means to achieve a working quality management

and to establish suitable basic software development

processes (QM to ASIL D). ASPICE is a framework for

improving and evaluating processes within the auto-

motive industry. ASPICE targets repeatable project

success	 through	 suffi	cient	 process	 quality.	 ASPICE	

does not however specify in what ways these require-

ments must be met. Agile methods support to meet

ASPICE collaboration-related requirements by, for

example. assigning roles and facilitating interaction

between stake holders. Figure 4 shows the interrela-

tionship between functional safety, ASPICE and agile

in this case the agile method Scrum.

Scrum, as seen in Figure 4, can support meeting

ASPICE requirements regarding Project Management

and therefore also assists in meeting corresponding

requirements in ISO 26262.

Figure 3: Source Structure of ISO 26262: 2018 (source: Elektrobit Automotive)

1. Vocabulary

2. Management of functional safety

3. Concept phase 4. Product management at the system level

7. Production,
operation, service

and
decomissioning

12. Adaptation of
ISO 26262 for
motorcycles

5. Product
development at

the hardware level

6. Product
development at

the software level

8. Supporting processes

9. Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses

10. Guidelines on ISO 26262

11. Guidelines on application of ISO 26262 to semiconductors

9

Scrum Supports Compliance to ASPICE

In one sprint (nearly) all ASPICE process areas may

be processed. This makes it possible to assess and

improve the process maturity regularly after each

sprint in the project. Thus process changes can

almost immediately be tested in the project regard-

ing improvement impact and efforts. This increases

quality,	 effi	ciency	 and	 acceptance	 of	 the	 resulting	

processes. As ASPICE does not assess the theoretical

processes, but their practical application in a project,

the	acceptance	of	a	defi	ned	process	by	 the	project	

team is essential for achieving a good ASPICE rating.

Doing all activities related to one function in a very

short time frame within one team makes it much

easier to keep, for example. requirements, design,

implementation and tests consistent and to link

them in a traceable way, which is a central require-

ment of ASPICE.

ASPICE Compliance Supports Compliance to ISO

26262

ISO 26262 part 8 (“Supporting processes”) demands

the	 usage	 of	 confi	guration	 and	 change	 manage-

ment. ASPICE is explicitly mentioned as an example

of a possibly applicable standard in this context.

ISO 26262 part 3 (“Concept phase”) describes how

technical	 risks	are	 classifi	ed	according	 to	 so	called	

Safety Integrity Levels (ASIL) or “QM”. QM indicates

that	quality	processes	are	suffi	cient	 to	manage	the	

identifi	ed	 risk.	 For	 risks	 classifi	ed	 with	 an	 ASIL,	

requirements from ISO 26262 come on top of the

normal quality processes. Therefore software devel-

opment compliant to ASPICE can be considered as

the necessary basis for compliance with ISO 26262.

Figure 4: Interrelationship between Functional Safety, Automotive SPICE®, and Scrum (source: Elektrobit Automotive)

System Engineering Process Group (SYS)
SYS.1

Requirements Elicita�on

So�ware Engineering Process Group (SWE)

Suppor�ng Process Group (SUP)

SYS.2
System Requirements Analysis

SYS.3
System Architectural Design

SYS.5
System Qualifica�on Test

SYS.4 - System Integra�on and
Integra�on Test

SWE.1 - So�ware
Requirements Analysis

SWE.2
So�ware Architectural Design

SWE.3 – So�ware Detailed
Design and Unit Configura�on

SWE.5 – So�ware Integra�on
And Integra�on Test

SWE.4 –
So�ware Unit Verifica�on

SWE.6
So�ware Qualifica�on Test

SUP.1
Quality Assurance

SUP.8
Configura�on Management

SUP.4
Verifica�on

SUP.9
Problem Resolu�on Mgmt.

SUP.4
Joint Review

SUP.10
Change Request Management

SUP.7
Documenta�on

Supports Supports

Agile ASPICE Functional Safety

1. Vocabulary

2. Management of functional safety

3. Concept phase 4. Product management at the system level

7. Production,
operation, service

and
decomissioning

12. Adaptation of
ISO 26262 for
motorcycles

5. Product
development at

the hardware level

6. Product
development at

the software level

8. Supporting processes

9. Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses

10. Guidelines on ISO 26262

11. Guidelines on application of ISO 26262 to semiconductors

10

3	 Workflow

3.1	 Scrum Workflow
Scrum is one of the most widely applied agile meth-

ods. Scrum describes an iterative, incremental devel-

opment process. The Scrum process is illustrated

below in Figure 5.

In the initial step, the role of the product owner lists

a priority of user stories, which are coherent require-

ments for the overall software product. This set of

user stories is referred to as the product backlog. All

following goals and tasks are pulled from the prod-

uct backlog. A subset of these user stories is pulled in

each iteration, referred to as a sprint. For each sprint,

usually with a fixed duration of one to four weeks, a

sprint goal is defined during the sprint planning. The

subset of user stories during each sprint is called the

sprint backlog. The development team should meet

the requirements set by the sprint goal and ide-

ally deliver a usable software product at the end of

each sprint. The development team is continuously

assisted by the Scrum master, who manages the pro-

cess and eliminates all occurring obstacles along the

way. Daily Scrum meetings are held, primarily for

the development team to interchange and discuss

what has been done so far, what is planned until

the next daily Scrum meeting and what impediments

they have come across. Daily Scrum meetings also

give the product owner the possibility to stay up to

date and answer questions when required.

Figure 6 shows the iterative Scrum development

management process. Each sprint concludes with a

sprint review, where the accomplished user stories

are demonstrated. The development team receives

feedback from the product owner and all present

stakeholders. During the subsequent Scrum ret-

rospective, the development team, assisted by the

Scrum master, reflects upon the achievements of the

sprint and discusses commitments to improve the

next sprint. A new sprint follows, by pulling new user

stories from the product backlog. This cycle contin-

ues until the final software product can be delivered.

3.2	 ISO 26262 Safety Life Cycle
ISO 26262 describes a safety life cycle of auto-

motive E/E systems. The safety life cycle consists

of three phases, from the product idea to its final

decommissioning, in which all relevant safety activ-

ities are embedded in. The three individual phases

are divided in Figure 7 and are classified as “Con-

cept phase”, “Product development” and “After the

release for production”. All phases of ISO 26262

require defining persons, departments and organi-

zations responsible for the individual safety activities

and the confirmation that the items under consider-

ations are developed in accordance with ISO 26262.

The concept phase initiates the safety life cycle.

The objective of the concept phase is to define and

describe the functionality of the item, its dependen-

cies and interactions with the environment and other

items. Adequate understanding of the item func-

tionality then supports the completion of activities

in subsequent phases. Central to the concept phase

is the hazard analysis and risk assessment (HARA).

The HARA is a method to identify and categorize

potential vehicle-level hazards due to malfunction-

ing behavior of the item and formulate safety goals

to prevent or mitigate the hazardous events.

Figure 5: Scrum Workflow (source: Elektrobit Automotive)

Figure 6: The Iterative Process of Scrum (source: Elektrobit Automotive)

Usable Software

Daily Scrum Meeting

Sprint goalProduct backlog

Sprint backlog

Impediment
backlog

Backlog
Preparation

Sprint
Planning

Daily
Scrums

Sprint
Review

Retrospective

11

The product development phase of the safety life

cycle offers guidance on the product development

and the corresponding functional safety activities at

the system level, the hardware level, and the soft-

ware level.

Functional safety confirmation measures are per-

formed to provide additional evidence for the

achievement of functional safety by the item and its

elements during the development phase.

3.3	 Challenges
Scrum and Scrum sprints with a fixed duration of one

to four weeks are based on an iterative approach.

At first glance, it may seem that Scrum sprints are

not easily matched with the hierarchically modeled

structure of ISO 26262. The major objective at the

end of each sprint is to deliver working software.

This does not contradict with the requirements of ISO

26262 as long as it can be ensured that each sprint

is based on adequately mature input work products

needed for the development of safety-related soft-

ware and that the resulting software is used in a

suitable way considering the achieved level of safety

maturity. Therefore, no software that is suitable for

vehicle testing may be generated in preliminary

sprints.

Working increments delivered with every sprint

may achieve a certain functionality, however from

a safety perspective all increments must also fulfill

corresponding safety requirements. Thus besides

offering working software, additional effort is

required to also achieve the required level of safety

with each sprint.

Figure 7: Source ISO 26262 Lifecycle (source: Elektrobit Automotive)

2-5 Overall safety management

2-6 Project dependent
safety management

2-7 Safety management regarding
production, operation, service and
decommissioning

3-5 Item definition

2-6 Impact analysis at
the item level

6-6 Hazard analysis and
risk assessment

3-7 Functional safety
concept

4 Product development at the
system level

2-6 Release for
production

5 Product
development

at the
hardware level

6 Product
development

at the
software level

7-7 Operation, service
and decommissioning

7-6 Production7-5 Planning for
production,

operation, service
and decommissioning

2-6
Confirmation

measures

Allocation
to other

technologies

External
measures

Control-
lability

In the case of a
modification,
back to the
appropriate

lifecycle phase
Outside the item
Inside the item

12

3.4	 Solutions
To maintain an organization-wide safety culture,

additional safety activities and mechanisms can be

included in the product backlog (e.g. definition of

the required minimum safety maturity depending

on the intended use of the software, such as vehi-

cle testing on proving ground versus testing on

public roads). By suitably integrating safety aspects

into the backlog and the implemented software, a

Scrum-based development management supports

adherence to safety requirements. A dynamic sprint

backlog also welcomes changing requirements,

even in late development phases, unless there is

an unreasonable negative impact on safety. From

a Scrum perspective, teams must be aware that no

unrestricted usable software product may be gener-

ated in early sprints during a product development.

Therefore, project planning must not be reduced to

the planning of each sprint, but must consider the

milestones of the entire project.

Additionally, both Scrum and ISO 26262 support

a maturity model with corresponding maturity lev-

els. Maturity levels define a degree of completion.

By introducing a maturity model, efforts regarding

safety can be divided into maturity levels and dis-

tributed over multiple sprints. The necessary quality

and maturity of work products (e.g. software, docu-

ments, and, if applicable, hardware) to meet safe-

ty-related due care, can be achieved with suitable

“Definition of Done” and the corresponding accept-

ance criteria (acceptance review).

Detected safety issues are included into the backlog,

prioritized and solved in sprints using a risk-based

approach. A subset of all safety requirements may

be postponed and implemented later depending on

factors such as milestones defined by stakeholders

(e.g. customer or yourself) or required safety matu-

rity of the software depending on the intended use

of the product. It is not necessary to achieve full

safety maturity at the end of each sprint.

13

4.1	 Scrum Roles
Scrum defines three roles with distinctive responsi-

bilities, the product owner (PO), the development

team (DT), and the Scrum master (SM). Together

these roles form the Scrum team (ST).

The product owner is responsible for the product

backlog. Based on product functionality, the product

owner determines the requirements, formulates, and

provides a uniform view of the final product and its

intended use. The product owner is responsible for

providing and maintaining the product backlog and

for periodization of the contained product require-

ments (e.g. user stories) to maximize satisfaction of

all relevant product stakeholders. After each sprint,

the product owner may change the priorities and

functions, as well as accept or reject the delivered

functionalities (e.g. implemented user stories).

The development team is responsible for product

implementation by using suitable technologies (e.g.

software). A Scrum development team, comprised of

4 to 10 self-organizing members, realizes the final

product using an incremental approach. The devel-

opment team adheres to the tasks set during each

sprint backlog to achieve the goal of each develop-

ment cycle. The development team is responsible

for carefully executing the development activities

required, to provide the defined product in time and

quality considering the state of the art for the tech-

nologies used (e.g. state of the art for software engi-

neering). The work results of the development team

are demonstrated regularly to the product owner

and other relevant stakeholders.

The Scrum master is responsible for Scrum process

adherence. The Scrum master assumes a supportive

role for the team, by ensuring readiness and produc-

tivity of the team. The Scrum master further facili-

tates close collaboration between roles and functions

and coaches the team when necessary. To keep the

team goal-oriented and on course, the Scrum master

clears up impediments and protects the team from

interference on the way.

A definition of Scrum including a more detailed

description of Scrum roles/events/artifacts is given

by the “Scrum Guide” (https://www.scrum.org/

resources/scrum-guide).

4.2	 ISO 26262 Roles
ISO 26262 primarily defines the safety manager

(SaM) role. The safety manager is responsible for

planning and coordinating the functional safety

activities in the development phase (i.e. define and

maintain the safety plan and monitor the progress

of the safety activities against the safety plan). The

safety manager ensures adherence to ISO 26262.

For product development at software level the safety

activities include:

•	 Development or refinement of software safety

requirements.

•	 Development and analyses of the software

architectural design.

•	 Development and implementation of the soft-

ware units.

•	 Software integration at different integration

levels.

•	 Verification across the development cycle.

•	 Activities to ensure confidence in used software

tools.

•	 Applicable functional safety confirmation

measures.

4.3	 Challenges
Merging safety aspects with Scrum faces two chal-

lenges. The first is to ensure that the Scrum team is

adequately aware of the safety-relevant due care for

each Scrum role. Secondly, the question arises how

the role of the safety manager (or its tasks) can be

addressed in Scrum.

4.4	 Solutions
Handling of Roles

For safety-related due care, each Scrum role must

additionally cover the following tasks:

•	 Product owner:

•	 Ensures that the product backlog also

contains the required safety-related content

(e.g. technical safety requirements allocated

to software or corresponding DIA elements).

•	 Requests achievement of functional safety

for the developed product in accordance

with ISO 26262 and the applicable state of

the art for the subject matter (e.g. vehicle

domain).

•	 Provides the required infrastructure and

resources for a safety-related development.

•	 May also be assigned the role of the safety

manager.

4	 Roles

14

•	 Development team:

•	 Considers higher effort for the development

of safety-related products in its effort esti-

mation (e.g. additional effort for imple-

menting safety measures).

•	 May also include a dedicated safety man-

ager as development team member.

•	 Performs the development with the required

due care (e.g. considering the DIA and

requirements of ISO 26262-2 or ISO

26262-6 for the development of safety-re-

lated software).

•	 Ensures that the applied development

processes, methods and tools or design and

coding guidelines are suitable (e.g. consid-

ering the requirements of ISO 26262-6, ISO

26262-8, ISO 26262-9).

•	 Informs the safety manager and product

owner about the achievement of func-

tional safety for each sprint based on the

corresponding objectives (e.g. set of safety

requirements to be implemented that are

required for the intended use of the gener-

ated product version).

•	 Scrum master:

•	 Supports adherence to safety-related due

care (e.g. considering the DIA and require-

ments of ISO 26262-2 or ISO 26262-6 for

the development of safety-related software).

•	 Ensures the timely provisioning of the

required infrastructure and resources for a

safety-related development.

•	 May also be assigned the role of the safety

manager.

The safety manager must also reflect suitable agile

practices when defining the safety plan. These are:

•	 Supplement the “Definition of Done” with safe-

ty-related content.

•	 Support the product owner in the creation of

safety-related backlog.

•	 Coordination with other stakeholders (e.g. with

OEM or suppliers according to DIA).

•	 Coordination of the required additional func-

tional safety confirmation measures.

15

Combining Roles

There are multiple different ways to combine the

ISO 26262 roles with the Scrum roles. The combina-

tion is largely affected by how the role of the safety

manager is handled. It is important to note that the

safety manager does not have to be organizationally

independent from the team.

Figure 9 shows a Scrum team in which the role of

the safety manager is done part-time. The part-time

role of the safety manager can be assumed by either

combining it with the product owner, Scrum master,

or a member of the development team.

Figure 10 illustrates a larger Scrum project. A full-

time safety manager is part of the Scrum team.

A constellation of multiple Scrum teams is shown in

Figure 11. One full-time safety manager is support-

ing multiple Scrum teams. Within each Scrum team,

the relevant members must have suitable safety

expertise.

Figure 10: Larger project/complexity (source: Elektrobit Automotive) Figure 11: Project with multiple teams (source: Elektrobit Automotive)

Figure	8:	Legend	for	the	following	fi	gures	(source:	Elektrobit	Automotive)

Figure 9: Small project/complexity (source: Elektrobit Automotive)

PO
Product owner

SM
Scrum master

SaM
Safety manager

DT
Development team

Scrum team
ST

Mul�ple teamsLarger team/complexitySmall team/complexity

PO SM DT PO SM SaM SaM

ST ST

ST1

ST2

DT

PO SM DT

PO SM DT

16

5.1	 Scrum Artifacts
•	 Product backlog

•	 Sprint backlog

•	 Task board

•	 Sprint result

•	 Definition of Done (DoD)

5.2	 ISO 26262 Artifacts
Depending on the scope of the development and

the project setup multiple instances of work prod-

ucts/ artifacts may be needed (e.g. for application

software or basic software and/or operating system

contained in an ECU).

General Documents, e.g.:

•	 Safety plan

•	 Change management plan

•	 Configuration management plan

•	 Documentation of the software development

environment, e.g. modelling and coding guide-

lines

•	 Documentation guidelines

•	 Documentation management plan

Specifications and Designs, e.g.:

•	 Software safety requirement specification

•	 Software architectural design specification

•	 Software unit design specification

•	 Configuration or calibration data specification

Implementation, e.g.:

•	 Software unit implementation (e.g. as source

code or binaries)

•	 Embedded software with calibration data

Analysis at the Software Architectural Level,

e.g.:

•	 Dependent failures analysis report

•	 Safety analyses report

Verification, e.g.:

•	 Software verification specification

•	 Software verification report

Further reports, e.g.:

•	 Software tool criteria evaluation report

•	 Software tool qualification report

•	 Functional safety assessment report for software

•	 Functional safety Aaudit report for evaluated

software development

•	 Release for production report for the embedded

software with calibration data

5.3	 Challenges
1.	 Differentiation necessary between safety-re-

lated and non-safety-related content of artifacts

(e.g. ASIL attributes for requirements).

2.	 Additional artifacts for achieving functional

safety.

3.	 Additional planning and tracking of safety

artifacts and safety measures.

4.	 Agile artifacts often don’t match traditional

types of documents (e.g. word document), and

are fine granular information instead (e.g.

single requirement or tickets).

5.4	 Solutions
1.	 Tagging of backlog content as safety-relevant

(e.g. assigning ASIL to content).

2.	 Consideration of safety activities in DoD.

3.	 Employed tools must support the linking of

items and offer different perspectives for base

lining, versioning and traceability.

4.	 Generated documents must be feasible and

suitable (e.g. for the creation of the safety

case).

5	 Artifacts

17

6.1	 Refactoring
Abstract

Refactoring is the process of restructuring existing

code without changing its external behavior. Refac-

toring is intended to improve nonfunctional attrib-

utes of the software. Advantages include improved

code readability and reduced complexity; these can

improve source-code maintainability and create

a more expressive internal architecture or object

model to improve extensibility [source: https://

en.wikipedia.org/wiki/Code_refactoring].

Assessment of the Agile Practice from a Func-

tional Safety Perspective

1.	 Refactoring also offers benefits regarding

the reduction of safety risks in safety-related

projects through:

•	 Easier maintenance  supports avoidance

of systematic faults.

•	 Higher performance  supports fulfillment

of safety timing constraints.

•	 Less prone to errors  overarching goal of

safety.

•	 Lower degree of complexity  supports

avoidance of systematic faults and simplifies

testability.

2.	 As part of the iterations, reviews of software

architecture, detailed design, and code should

be performed regularly.

3.	 Refactoring should be a deliberate, docu-

mented team decision.

4.	 Basis for decisions must be:

•	 Analysis of the impact of the intended refac-

toring regarding safety.

•	 Project-Risk-Analysis:

In a safety context more effort regarding doc-

umentation, testing, etc. is required in com-

parison with QM-software. Automated tests

with high coverage help limit the additional

work. The earlier refactoring is employed in

a project, the smaller is the resulting effort,

as safety requirements do not have to be met

during early product phases (“Fit for pur-

pose”).

5.	 In case refactoring increases the safety risks,

refactoring must not be performed.

Example: Due to time constraints, sufficient

verification and validation after the refactoring

cannot be ensured:

•	 Refactoring and incremental reviews do not

replace complete reviews.

Reference: [9]

6.2	 Pair Programming
Abstract

Pair programming is an agile software development

technique in which two programmers work together

at one workstation. One, the driver, writes code while

the other, the observer or navigator, reviews each

line of code as it is typed in. The two programmers

switch roles frequently.

Assessment of the Agile Practice from a Func-

tional Safety Perspective

•	 The development of errors is prevented early,

and the development of intelligible and efficient

code is supported.

•	 While reviewing, the observer also considers

the “strategic” direction of the work, coming up

with ideas for improvements and likely future

problems to address. This is intended to ensure

that the driver stays focused on the “tactical”

aspects of completing the current task, using the

observer as a safety net and guide.

•	 Pair programming may replace or reduce the

need for reviews during development.

•	 The suitability of pair programming must be

considered when defining the verification

approach in accordance with ISO 26262.

References:

•	 [8], chapter 16

•	 [3], Part 6: Table 7, Methods for software

verification

6.3	 Continuous Integration
Abstract

Continuous Integration (CI) is a development prac-

tice that requires developers to integrate code into a

shared repository several times a day. Each check-in

is then verified by an automated build, allowing

teams to detect problems early.

By integrating code regularly, you can detect errors

quickly, and locate them more easily [source:

https://en.wikipedia.org/wiki/Continuous_integra-

tion#cite_note-:0-1 resp. https://www.thoughtworks.

com/continuous-integration].

6	 Other Agile Practices

18

Assessment of the Agile Practice from a Func-

tional Safety Perspective

•	 The tool chain used for continuous integration

must be evaluated regarding tool confidence

level as well as qualified if applicable.

•	 Tool chain users must be sufficiently qualified.

•	 Software from continuous integration may not

be directly released for production, additional

measures are necessary.

•	 Results from continuous integration can be

given earlier into test (e.g. HIL/SIL test).

•	 Test during development, not at the end of a

project => Under time pressure (e.g. when close

to SOP), it cannot happen that tests are reduced

to save time.

•	 Continuous integration improves development

efficiency.

•	 Automated testing as part of Continuous Inte-

gration supports ISO 26262 as long as suitable

tools are used.

Reference: [8]

6.4	 User Stories
Abstract

Epics and User Stories as rough functional descrip-

tions (high level requirements) are helpful for early

and iterative planning and negotiation. Detailed

requirements have to be defined additionally.

Assessment of the Agile Practice from a Func-

tional Safety Perspective

•	 At least at the end of a sprint, detailed require-

ments must be documented and linked with test

cases and implementation.

•	 With respect to requirements, safety-related

agile development does not differ basically from

agile automotive development with ASPICE.

Reference: [8]

19

7	 Recommendations for Audits/Assessments

Involve auditors/assessors early and carry out assess-

ments alongside the project, especially if it´s the first

agile safety-related project in the company. It is safe

to assume that auditors and assessors have little

understanding of agile practices, as these practices

are not established widely.

A good time for a first feedback from an auditor/

assessor could be when the agile safety-related pro-

cess has been defined. Even though agile develop-

ment strives for early feedback, feedback must not

be reduced to functionality that is experienceable

and from the end user only.

Development in short iterations has the big advan-

tage, that the whole process can be assessed at any

time of the project, as each iteration uses the whole

process. In projects using a sequential process or

long iterations (e.g. sample phases), an assessment

during a project can only assess the process steps

that were used up to this time (e.g. in the imple-

mentation phase, the validation process can only be

assessed theoretically).

20

8	 References to other Documents

1.	 Agile Principles and ISO 26262 (ZVEI):

https://agile.zvei.org/agilitaet-in-branchen/

agile-in-automotive/

2.	 Agile in Automotive: Pocket Guide Scrum

(Kugler Maag)

3.	 ISO 26262:2018

4.	 VDA Guideline “Agile Collaboration”

5.	 https://www.scrum.org/resources/scrum-guide

6.	 	https://www.scaledagileframework.com/

7.	 https://less.works/

8.	 Kent Beck: Extreme Programming

9.	 Martin Fowler: Refactoring

10.	Martin Fowler: Continuous Integration

11.	Agile Alliance - Agile Glossary:

https: / /www.agi leal l iance.org/agi le101/

agile-glossary/

21

9	 Participating Companies

Elektrobit Automotive GmbH

Endress+Hauser SE+Co. KG

Hella GmbH & Co. KGaA

Infoteam Software GmbH

Innoventis GmbH

Kugler Maag CIE GmbH

Robert Bosch GmbH

ZVEI - German Electrical and Electronic
Manufacturers’ Association
Lyoner Strasse 9
60528 Frankfurt am Main, Germany

Phone: +49 69 6302-0
Fax: +49 69 6302-317
E-mail: zvei@zvei.org
www.zvei.org

So
ur

ce
: M

an
ue

l f
ab

a
-

Fo
to

lia
.c

om
 /

N
ik

ol
ai

 S
or

ok
in

 -
 F

ot
ol

ia
.c

om
 /

Je
an

et
te

 D
ie

tl
-

Fo
to

lia
 /

D
an

ie
l E

rn
st

 -
 F

ot
ol

ia

