Guideline for Customer Notifications of Product and /or Process Changes (PCN) of Electronic Components specified for Automotive Applications

Rev. 4.0 - December 2019
Electronic Components and Systems (ECS) Division
Impressum
Product/Process Change Notification
Guideline for Automotive Electronic Components

Published by:

ZVEI Working Group: PCN- Methodology

ZVEI–German Electrical and Electronic Manufacturers’ Association e.V.
Electronic Components and Systems (ECS) Division
Lyoner Straße 9 • 60528 Frankfurt am Main, Germany
Phone: 069 6302 - 402 • E-mail: zvei-be@zvei.org • www.zvei.org/ecs

Contact person: Dr. Rolf Winter

Picture:
ZVEI–German Electrical and Electronic Manufacturers’ Association e.V.
ArchMen - Fotolia.com

1st Edit., December 2006
Rev. 2.1, January 2013
Rev. 2.2, January 2015
Rev. 3.0 October 2016 (Changes to Rev.2.2 are indicated by underlining)
Rev. 4.0 December 2019 (Changes to Rev.3.0 are indicated by underlining)

This document may be reproduced according to the copyright and liability chapter free of charge in any format or medium providing that it is reproduced accurately and not used in a misleading context. The material must be acknowledged as ZVEI copyright and the title of the document has to be specified. A complimentary copy of the document where ZVEI material is quoted has to be provided.

Every effort was made to ensure that the information given herein is accurate, but no legal responsibility is accepted for any errors, omissions or misleading statements in this information.

The Document and supporting materials can be found on the ZVEI website www.zvei.org/PCN.
Content

1. Purpose / Scope
2. Preamble
3. Terminology/Definitions
4. Approach to classify Product/Process changes
   4.1. Change Notification
   4.2. Change Evaluation
5. Customer Notification Process for PCN’s
   5.1. Preparation of a Product/Process Change Notification
   5.2. First and second feedback from customer
   5.3. Evaluation and Documentation
   5.4. Finalize and Closure
   5.5. Disapproval
   5.6. Escalation path
6. Communication Flow for Information Notes
7. References
1. Purpose / Scope

This guideline describes the specific elements of the change management Process in the automotive market for Product and/or Process changes. The need for Product/Process change notifications (PCN) is defined, content and form of customer notifications is recommended.

General rules and requirements are proposed for:

1. the classification of Product/Process changes
2. the corresponding customer change notification
3. the recommended qualification activities for suppliers and customers (based on AEC-Q and IEC)

This guideline is aimed at suppliers who produce, assemble or test electronic components, particularly semiconductor devices, passive components, LED components and Multi-Chip-Modules, which are specified between customer and supplier for automotive applications or designed for automotive applications.
2. Preamble

Customer notifications resulting from Product/Process changes as described in this guideline require a close supplier/customer co-operation for which the following statements apply:

(1) The supplier is entitled to perform changes to the manufacturing Process and/or the Product itself. For changes which require customer notification or approval as defined below the customer is informed well in advance to the intended date of implementation in order to account for the qualification and release effort on the customer side and possible OEM approval requirements.

(2) The customer actively supports the change request by giving timely feedback. This feedback shall include but is not limited to (a) acknowledgement of receipt (1. feedback), (b) interim feedback (2. feedback) stating the customer’s release requirements or giving a timeline by when these requirements will be available, and/or (c) change acceptance (final feedback).

(3) Continuing lack of response by the customer in spite of feedback requests by the supplier will trigger appropriate escalation actions by the supplier to get customer feedback. In absence of feedback from the customer, a decision is taken by the supplier how to proceed. The customer will be informed accordingly. In cooperative and faithful supplier/customer relationship escalation will not be necessary.

(4) For exceptional cases (like disaster recoveries) mutually agreed appropriate measures deviating from the outlined standard customer notification Process may apply.
3. Terminology/Definitions

**Automotive Application**: embedded electronic system which uses one or more of the electrical/electronic components/modules in a motor vehicle like Electronic Control Unit, Transmission Control Unit, Display, Headlamp units, etc.

**Board**: Printed Circuit Board which is used to test electronic components or to evaluate a potential impact to processability/manufacturability at customer.

**Component**: part manufactured by supplier or in case of modules part delivered to supplier. See also Product.

**Customer**: see Tier1

**DeQuMa**: Delta Qualification Matrix is a tool to describe the requested change, the evaluation level, and the test which should be considered for qualification

**Evaluation Level**: (as indicated in the DeQuMa)

i. "C: Component Level": The evaluation of a change at component has to be done by the component manufacturer at the component only. Generic data from other relevant evaluations can be used.

ii. "B: Board Level": The intended change described in the PCN may influence processability / manufacturability of the component at board level. Therefore additional evaluation by Tier1 may be necessary, for example reliability tests on application relevant test boards, depending on change.

iii. "A: Application Level": The intended change described in the PCN may influence the properties of the application (e.g. ECU). In addition to the evaluation under C or B the influence of the change in the ECU is evaluated by suitable investigations by the Tier1. The scope of the evaluation has to be aligned with the OEM. It has to be considered whether the ECU / assembly requirements are already sufficiently safeguarded by other qualifications (application-specific risk assessment).

iv. "*": Not relevant for qualification matrix

**Fit**: External dimensions and associated tolerances of the Product (without packing).

**FMEA**: Failure Mode and Effects Analysis is a methodology to identify risks in Product and Processes and prevent potential failure modes. Hereby the probability of occurrence of a potential failure as well as the effect of this failure in terms of its severity and the ability of detection is assessed.

**Form**: visual appearance including shape, colour, marking, and surface finish of the Product (without packing).

**Function**: electrical, mechanical, thermal and performance characteristics of the Product (without packing).
**ID number:** is a unique identification number for each indicated change defined in the ZVEI PCN Delta Qualification Matrices. The same ID number is used in the PCN Form sheet to identify the change.

**Information Note:** A document sent to customers for information only, describing the change(s), the reason for the change(s), its timeline, and projected impact and containing all information as described in 5.1 (Figure 4). The Information Note can also be used for those types of datasheet modifications as specified in Tables 1, 2 and 3 and/or for any other non-mandatory customer information.

**Manufacturability:** see Processability/Manufacturability

**Multichip Module (MCM):** Multiple active and/or passive sub-components interconnected to create a single complex circuit within a single MCM package that is intended for reflow solder attachment to a printed circuit board. Sub-components may be molded and/or unmolded (die) combined into a single hermetic or non-hermetic package.

**OEM:** Car maker

**PCN:** (Product/Process Change Notification): A document sent to customers describing change(s), the reasons for the change(s), its timeline, projected impact and containing all information as described in 5.1 (Figure 4).

**Processability/Manufacturability:** The properties of a Product to be processed according to the specified Processes at customer.

**Product:** Electrical/electronic component manufactured by supplier and delivered to customer including packing and associated information (e.g. labelling, barcode, shipment documents).

**Reliability:** the capability of a Product to perform specified properties over time

**Supplier:** see Tier2

**Supply Chain:** Tier2 - Tier1 - OEM

- **OEM:** Car Maker
- **Tier1:** Automotive application manufacturer and direct supplier to OEM
- **Tier2:** Electronic component manufacturer and direct supplier to Tier1

In case of a more complex Supply Chain, all participants are requested to apply the regulations and Processes described in this document by appropriate measures and/or contracts.

**Note:** Minor / Major Changes: these terms are no longer used in this document. Classification of different types of notification (PCN, Information Note and no Information) is shown in table 1, 2, 3 and 4.
4. Approach to classify Product/Process changes

4.1. Change Notification

The supplier shall have a documented method and an associated metric for assessing the technical risk of a change and its potential impact within the Supply Chain. One such method is the Failure Mode and Effects Analysis (FMEA).

Based upon the assessment for the Change Request technical and contractual aspects have to be taken into account in order to decide whether a risk remains for the Supply Chain or not. If risk remains PCN is required. If not, an assessment of change type referring to Tables 1, 2, 3 or 4 is necessary to decide whether or which kind of Customer Notification is required.

![Change Request Flowchart]

**Figure 1**: General change assessment flow

The change assessment matrix in Tables 1, 2, 3 and 4 contain examples only and should not be considered as representing all possible changes. These matrices are aimed at giving guidance in the decision Process concerning the need and kind of Customer Notification.
Table 1: Change Assessment Matrix for semiconductor components without LED components

<table>
<thead>
<tr>
<th>1) Change?</th>
<th>2) Assessment of impact on Supply Chain regarding following aspects</th>
<th>Result: Remaining risks within supply chain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Type of change</td>
<td>No</td>
</tr>
<tr>
<td>- Any change with impact on agreed upon technical contractual agreements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Any change with impact on processability/manufacturability at customer, which is not covered in the matrix below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Change of datasheet parameters/ electrical specification (min./max./typ. Values) and/or AD/DC specification</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>- Correction of datasheet or issue of errata</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>- Specification of additional parameters</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Design changes in active elements.</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Design changes in routing.</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Chip size/ die size</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Firmware modification</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Water production</td>
<td>New / change of wafer substrate material</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New water diameter</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New final wafer thickness</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of electrically active doping/implantation element</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of gate material / dielectrics</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New / change of backside operation (grinding / metallization)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New / change of metallization / wafer contacts</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New / change of passivation or die coating (without bare die)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change in process technology not covered by any other type of change</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Process integrity: tuning within specification</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Change of wafer supplier</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Change of specified wafer process sequence (deletion and/or additional process step)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Move all or parts to a different wafer fab site</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Lithography</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Oxide / Interlayer Dielectric</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>New final wafer thickness</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of top metallization or bond pad stack</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>New / change of backside metallization</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of wafer setup or number of possible good dies on wafer</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of optical appearance of wafer edge region (like inside coverage or edge exclusion)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Die scribe or separation, change of die size</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Die Preparation / Clean</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>New / change of passivation or die coating</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change in critical dimensions of package</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of leadframe base material</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change in leadframe dimensions</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of lead frame finishing material (internal)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of lead and heat slug plating material/plating thickness (external)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Bump Material / Metal System (internal)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Die attach material</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of bond wire material</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Substrate / Interposer</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Die Overcoat / Underfill</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Change of mold compound / encapsulation material</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of hermetic sealing</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of product marking</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Change in process technology (e.g. sawing, die attach, bonding, moulding, plating, trim and form, lead frame preparation, …)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Process integrity: tuning within specification</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Change of direct material supplier</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Change of specified assembly process sequence (deletion and/or additional process step)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Move all or parts of production to a different assembly site</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Die scribe or separation</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Die Preparation / Clean</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Molding / Encapsulation process</td>
<td>–</td>
</tr>
<tr>
<td>Packaging/shipping specification change</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Dry pack requirements change</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change of carrier (fray, reel)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change to labeling</td>
<td>I</td>
</tr>
<tr>
<td>Equipment</td>
<td>Production from a new equipment/tool which uses a different basic technology and which due to its unique form or function can be expected to influence the integrity of the final product</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Production from a new equipment/tool which uses the same basic technology (replacement equipment or extension of existing equipment pool) without change of process.</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Change in final test equipment type leading to a different test concept</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Move of all or part of electrical test wafer test and/or final test to a different test site</td>
<td>P</td>
</tr>
<tr>
<td>3.0</td>
<td>Change of the test coverage/testing process flow used by the supplier to ensure data sheet compliance (e.g. elimination/addition of electrical measurement/test flow block, relaxation/enhancement of monitoring procedure or sampling)</td>
<td>–</td>
</tr>
</tbody>
</table>

Hint: Changes to Rev. 3.0 are indicated by underlining
Table 2: Change Assessment Matrix for passive components
(as referenced in “VDA Production Process and Product Approval [PPA]”)

<table>
<thead>
<tr>
<th>1) Change</th>
<th>2) Assessment of impact on Supply Chain regarding following aspects</th>
<th>Result: Remaining risks within supply chain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any change with impact on special customer technical contractual agreements</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Change of datasheet parameters/electrical specification (min./max./typ. values) and/or AC/DC specification</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Correction of data sheet or issue of errata</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Specification of additional parameters</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Change of material composition - ...</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Change of supplier of material</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>Changes of termination, surface finish, shape, color, appearance or dimension structure - ...</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Changes of inner construction - ...</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>Changes in process technology or manufacturing methods - ...</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>Process integrity: tuning within specification</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>New Material/Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packing/shipping specification change (loosening of tolerances)</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Dry pack requirements change</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Change of carrier (tray, reel)</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Change of labeling</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Change of the product marking</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Change of packing/shipping specification</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Production from a new equipment/tool which uses a different technology and which due to its unique form or function can be expected to influence the integrity of the final product.</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Production from a new equipment/tool which uses the same basic technology (replacement equipment or extension of existing equipment pool).</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>Change in final test equipment type that uses a different technology</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Manufacturing site transfer or movement of a part of production process to a different location/site</td>
<td>P P</td>
<td></td>
</tr>
<tr>
<td>Elimination or addition of a manufacturing process step</td>
<td>—</td>
<td>P</td>
</tr>
<tr>
<td>Elimination of final electrical measurement / test flow block</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Change of test coverage used by the supplier to ensure data sheet compliance (e.g., elimination/addition of electrical measurement/test flow block, relaxation/enhancement of monitoring procedure or sampling)</td>
<td>—</td>
<td>P</td>
</tr>
</tbody>
</table>

Changes to Rev.3.0 are indicated by underlining.

For more specified description of the changes see PCN-DeQuMa-ZVEI-Rev.4.1 vs. Rev.3.1.xlsx provided at www.zvei.org/pcn.
<table>
<thead>
<tr>
<th>1) Change?</th>
<th>2) Assessment of impact on Supply Chain regarding following aspects</th>
<th>Result: Remaining risks within supply chain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any change with impact on agreed upon technical contractual agreements</td>
<td></td>
<td>No P</td>
</tr>
<tr>
<td>Any change with impact on technical interface of processability/manufacturability of customer, which is not covered in the matrix below</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of datasheet parameters/electrical specification (min./max./typ. values) and/or Pulse/DC specification</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Specification of additional parameters</td>
<td></td>
<td>I I</td>
</tr>
<tr>
<td>Change of data sheet or issue of errata</td>
<td></td>
<td>I I</td>
</tr>
<tr>
<td>Design changes in optixy</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Design changes in routing / layout</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Die shrinkage</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>LED package (except leadframe)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Design of leadframe</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Water production (new / change of water substrate or carrier material)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Water diameter</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>New final water thickness</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of electrically active doping/implantation element</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of stacking</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>New / change of metallization (specifically chip frontside)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>New / change of metallization (specifically chip backside)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change in process technique (e.g. significant process changes like lithography, etch, oxide deposition, die back surface preparation/background, ...)</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Process integrity: tuning within specification</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of material supplier with no impact on agreed specifications</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of specified water process sequence (deletion and/or additional process step)</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change in die coating or passivation</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>New water production location or transfer of water production to a different not previously released location/site/subcontractor</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Die attach material</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of bond wire material</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change in material for sub-components (excluding LED chip &amp; LED package related items) with impact on agreed specifications</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of leadframe/carrier base material</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of leadframe/carrier finishing material (internal)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of lead and heat slug plating material/plating thickness (external)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Bump Material / Metall System (internal)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of conversion material</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Change of direct supplier for converter material</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of converter process technology</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of product marking</td>
<td></td>
<td>I I</td>
</tr>
<tr>
<td>Change in process technology (e.g. die attach, bonding, moulding, plating, trim and form, ...)</td>
<td></td>
<td>P P</td>
</tr>
<tr>
<td>Process integrity: tuning within specification</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of direct material supplier with no impact on specification</td>
<td></td>
<td>– P</td>
</tr>
<tr>
<td>Change of specified assembly process sequence (additional and/or deletion process step)</td>
<td></td>
<td>I I</td>
</tr>
<tr>
<td>New assembly location or transfer of assembly to a different not previously released location/site/subcontractor</td>
<td></td>
<td>P P</td>
</tr>
</tbody>
</table>

**Table 3: Change Assessment Matrix for LED components**

(as referenced in “VDA Production Process and Product Approval [PPA]”)

Changes to Rev.3.0 are indicated by underlining.
Table 4: Change Assessment Matrix for Multichip Module components (new)
(as referenced in “VDA Production Process and Product Approval [PPA]”)

<table>
<thead>
<tr>
<th>1) Change?</th>
<th>2) Assessment of impact on Supply Chain regarding following aspects</th>
<th>Result: Remaining risks within supply chain?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- contractual agreements</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- technical interface of processability/manufacturability of customer</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- form, fit, function, quality performance, reliability</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3) Type of change</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Any change with impact on agreed contractual agreements</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Any change with impact on processability/manufacturability at customer which is not covered in the matrix below.</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change of datasheet parameters/electrical specification (min./max./typ. Values) and/or AD/DC specification</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Correction of data sheet or issue of errata</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Specification of additional parameters</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Firmware modification</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Change that adds or subtracts sub-components from the module BOM</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Replacement of any sub-component by a Non-AEC qualified sub-component</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Replacement of any sub-component by an AEC qualified sub-component</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Critical characteristics of sub-component are not affected</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Critical characteristics of sub-component are affected</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change within a sub-component that has been requalified</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Critical characteristics of sub-component are not affected</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Substrate change affecting module schematic</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change to the processes used in module assembly (e.g. pick &amp; place, die attach, bonding, reflow, encapsulation, singulation, die overcoat, underfill, die preparation, die clean)</td>
<td>–</td>
<td>P</td>
</tr>
<tr>
<td>Process integrity: tuning within specification</td>
<td>–</td>
<td>P</td>
</tr>
<tr>
<td>Change to materials used in module assembly (e.g., adhesive, underfill, encapsulate, solder, epoxy, bump material, die attach material, bond wire, die overcoat, substrate, leadframe base material)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change of direct material supplier</td>
<td>–</td>
<td>P</td>
</tr>
<tr>
<td>Change to assembly location (Move all or parts of production to a different assembly site)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change of product marking</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Packing/shipping specification change</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change of carrier (tray, reel)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change to labelling</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Production from a new equipment/tool which uses a different basic technology and which due to its unique form or function can be expected to influence the integrity of the final product</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Production from a new equipment/tool which uses the same basic technology (replacement equipment or extension of existing equipment pool) without change of process.</td>
<td>–</td>
<td>P</td>
</tr>
<tr>
<td>Change to testing platform (Change in final test equipment type leading to a different test concept)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change to testing location (Move of all or part of the final test to a different test site)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Change of test coverage/testing process flow used by the supplier to ensure data sheet compliance (e.g. elimination/addition of electrical measurement/test flow block; relaxation/enhancement of monitoring procedure or sampling)</td>
<td>–</td>
<td>P</td>
</tr>
</tbody>
</table>

Table is part of the guideline for the first time, therefore no underlining.

Above four “Change assessment matrices” detail both formal and technical aspects and help to select the correct type of customer notification. “P”, “I”, and “-” stand hereby for PCN, Information Note and no customer notification, respectively.

Attention!: Changes indicated as “I” shall not be marked in the DeQuMa. For those Changes the “Information-Note-Form” is to use. As the DeQuMa is desired for PCN only, a marking of “I”-changes would automatically influence evaluation level and test effort.
4.2 Change Evaluation

Each change has to be evaluated. For changes which are listed in Tables 1, 2, 3 and 4 the PCN Delta Qualification Matrix (DeQuMa) has been developed by ZVEI (see Figure 2 and corresponding Excel File “DeQuMa”). This is a helpful guideline to determine which tests should be considered and which information is needed for approval of a proposed change.

For listed changes in Tables 1, 2, 3 and 4, the Delta Qualification Matrix contains proposals for evaluation based on accepted standards (AEC-Q) and latest knowledge. The described changes are classified for the best suitable evaluation level to verify feasible interactions between e.g. package, processability/manufacturability, and reliability.

Following classifications are used:

- A – application level (includes component and / or board level)
- B – board level (includes component level)
- C – component level

The evaluation levels are based on best knowledge of component/technology experts. They are recommendations for qualification effort and represent the most anticipated occurrence. Deviations from recommended evaluation level are shown under further applicable conditions.

The Delta Qualification Matrix considers aspects as line evaluation, specification of material and remarks to the change.
**Figure 2:** Worksheet “Passive Components” of the corresponding Excel File “Delta Qualification Matrix (DeQuMa)”

The recommended Communication Flow between Tier2 and Tier1 is described in chapter 5 (PCN) and chapter 6 (Information Notes) of this document (corresponding to VDA Volume 2 “Production Process and Product approval (PPA)”).

**Note:** The communication between and within all parties is crucial for the total throughput time of the PCN Process within the supply chain (Tier2–Tier1–OEM).
5. Customer Notification Process for PCN’s

In general the PCN notification Process can be understood as shown in Figure 3. Total through put time for complete PCN Process should not exceed the projected through put time as described in Table 3. All parties are asked to support short through put times.

Figure 4: Generic PCN Process flow
5.1 Preparation of a Product/Process Change Notification

ZVEI recommends to use the tools (Excel Files) “PCN Form” (Figure 4) and “Delta Qualification Matrix” (completion of mandatory content, relevant attachments like datasheet and qualification results, ...). Both available at [www.zvei.org/PCN](http://www.zvei.org/PCN). Both tools are linked by a unique identification number (ID number) for each indicated change in the ZVEI PCN Delta Qualification Matrices.

However, if the “PCN Form” is not used, all mandatory information indicated in the “PCN Form” have to be provided and the Qualification has to correspond to the Delta Qualification Matrix.

The PCN has to be forwarded to the appointed PCN contact at customer.

**Note:** Complete Information is crucial to avoid a delay in the PCN Process.

---

**Figure 5:** Standardized Information for Process/Product Change Notification (excerpt)
5.2 First and second feedback from customer

Customer should acknowledge receipt of the PCN and provide a first feedback latest within 2 weeks from delivery of the PCN according to the attached customer feedback form displayed in the ZVEI PCN template. In case of no reaction from customer within 3 weeks from delivery of the PCN an escalation will be started by the supplier (see Chapter 5.6).

After customer has finished their assessment according to the PCN Delta Qualification Matrix, a second feedback to the supplier will be given according to the attached customer feedback form displayed in the ZVEI PCN template indicating:

- acknowledge evaluation level,
- additional information,
- needed samples,
- estimated closing date for PCN.

The total through-put time for both feedbacks from customer should not be longer than 6 weeks from delivery of the PCN. If the second feedback is the final feedback the customer is asked to send the approval to the supplier immediately.

Table 4: Projected through-put time

<table>
<thead>
<tr>
<th>Evaluation Level</th>
<th>1st Feedback</th>
<th>2nd Feedback</th>
<th>Evaluation and Documentation(1)</th>
<th>Finalize and Closure</th>
<th>Projected through put time</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>2 weeks</td>
<td>4 weeks</td>
<td>2 weeks</td>
<td>2 weeks</td>
<td>10 weeks</td>
</tr>
<tr>
<td>C</td>
<td>2 weeks</td>
<td>4 weeks</td>
<td>4 weeks</td>
<td>2 weeks</td>
<td>12 weeks</td>
</tr>
<tr>
<td>B</td>
<td>2 weeks</td>
<td>4 weeks</td>
<td>12 weeks</td>
<td>2 weeks</td>
<td>20 weeks</td>
</tr>
<tr>
<td>A</td>
<td>2 weeks</td>
<td>4 weeks</td>
<td>depends on application</td>
<td>2 weeks</td>
<td>depends on application</td>
</tr>
</tbody>
</table>

(1) starts with sample availability at customer (if required)

5.3 Evaluation and Documentation

Based on customer feedback and assessment the identified action points need to be done. To assure the fastest throughput time a good cooperation and communication between supplier and customer is mandatory.

The evaluation by the customer results in an approval or disapproval of the proposed change. In case the projected throughput time (see table 4) is jeopardized an escalation will be started by supplier or customer (see Chapter 5.6).
5.4 Finalize and Closure

If the proposed change can be agreed, the customer will send an approval in writing to the supplier within two weeks. The supplier will implement the change and will indicate the first delivery of the changed Product.

5.5 Disapproval

Disapproval will end in a supplier decision how to proceed with the change. The customer will be informed accordingly.

5.6 Escalation path

Lack of response by the customer within the projected throughput time will trigger appropriate escalation actions by the supplier. In absence of feedback from the customer, a decision is taken by the supplier how to proceed. The customer will be informed accordingly.

6. Communication Flow for Information Notes

If an Information Note is required (see Figure 1 and Tables 1, 2, 3 and 4), ZVEI recommends to use the attached “Information Note” form. However, if the “Information Note” form is not used, all mandatory information indicated in the “Information Note” form should be provided.

Changes indicated as “I” shall not be marked in the DeQuMa. For those changes the IN-form shall be used. As the DeQuMa is desired for PCN only, a marking of “I”-changes would automatically influence evaluation level and test effort.

The Information Note has to be forwarded to the appointed PCN contact at customer (if not otherwise defined) in a timely manner.

Confirmation of receipt is recommended.

7. References

All mentioned documents are available at ZVEI Homepage under www.zvei.org/PCN