

Dienstleistungen backstage – Mehrwert unter dem Radar

Fachverband PCB and Electronic Systems

ZVEI Services in EMS Initiative

Productronica, 15. November 2017, 13.30 – 15.00 Uhr ZVEI PCB & EMS Market Place, Halle B3

Services in EMS Initiative

EMS steht für:

- Electronic Manufacturing Services
- Komplettdienstleister für die Entwicklung und Fertigung von elektronischen Baugruppen, Geräten und Systemen
- Das Angebot reicht von der Entwicklung über die Fertigung bis zum After Sales Service
- Electronic Manufacturing Services (EMS) sind eine der Wachstumssäulen der Elektronikbranche

Services in EMS Initiative Wertschöpfungsbereiche

Entwicklung von Hard- und Software für elektronische und mechatronische Baugruppen, Geräte und Systeme

Manuelles und automatisiertes Bestücken, Testen und Montage von Baugruppen, Systemen und Geräten mittels modernstem Fertigungsequipment und State-of-the-art-Technologien

Kundenspezifisches Design von der Leiterplatte über die Baugruppe bis hin zu Geräten und Systemen

Organisation, Steuerung und Logistik und Durchführung des gesamten Material- und Güterflusses inkl. Lieferung der bestellten Menge zum bestätigten Zeitpunkt

Entwicklung des Testkonzeptes mittels qualitäts- und zuverlässigkeitsbestimmender Verfahren

Umfassende Dienstleistung nach dem After Sales Verkauf und während der Lebenszeit eines Produktes



Das Materialmanagement regelt den Einkauf und die Versorgung der Produktion mit den erforderlichen Teilen und Stoffen.

Services in EMS Initiative Veröffentlichungen

electronica 2006

SMT Hybrid Packaging 2009

electronica 2010

Productronica 2011

electronica 2012

Productronica 2013

electronica 2014

Productronica 2015

electronica 2016

Services in EMS Initiative Teilnehmer

ROHDE&SCHWARZ

hadimec

KRISTRONICS

cicor

JUMO



Moderation:

Michael Velmeden, cms electronics

- Backstage Dienstleistungen Mehrwert unter dem Radar Raimund Landsbeck, Fujitsu
- **2.** Product Compliance Gustl Keller, Eltroplan
- 3. Validierung und Requalifizierung Dr. Georg Loisel, Melecs EWS
- 4. Datenaufbereitung

Integration von externen Komponentendaten in die Systemlandschaft von Zollner Mathias Marchner, Zollner Elektronik

Backstage Dienstleistungen – Mehrwert unter dem Radar Raimund Landsbeck, Fujitsu

Kurzportrait: Fujitsu

Branche: ICT Vollportfolio und EMS-Anbieter

Dienstleistungen: Entwicklung, Design, Sourcing & Procurement, Product

Compliance, Produktion, Staging/Customizing, Logistik,

After Sales Services

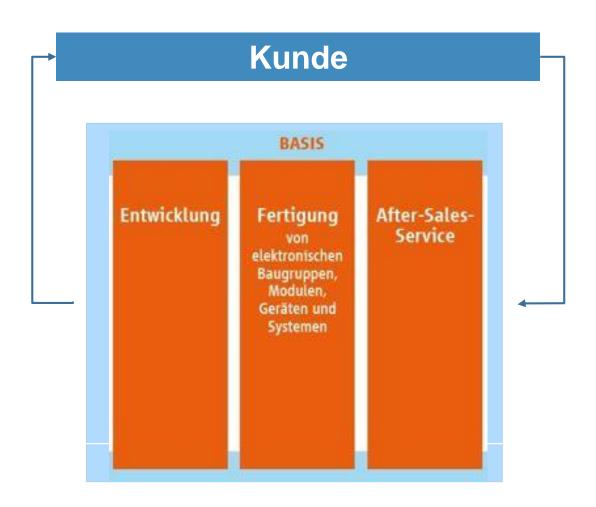
Kunden: B2B, öffentliche Auftraggeber, EMS, Multimedia, Licht-, Medizin-,

Industrie-, Kommunikations-, Mess- und Regeltechnik

Historie: 1935: Gründung

2015: 80 jähriges Jubiläum

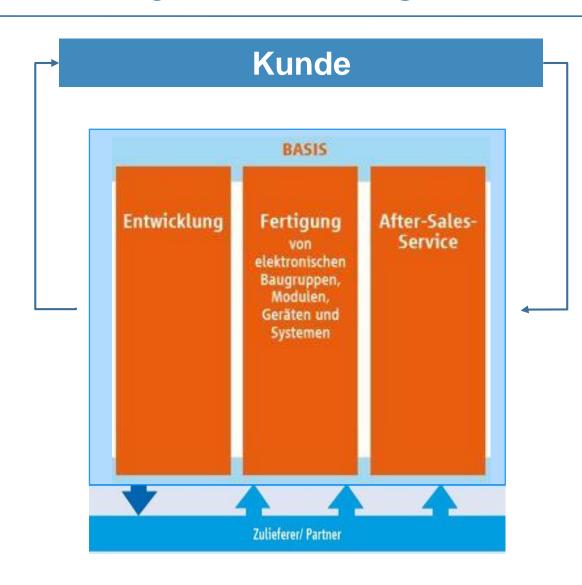
Standorte: In ca. 100 Ländern aktiv, globale Forschung, Entwicklung und


Produktion; Deutschland: Augsburg und München

• Kennzahlen: global: ca. 36 Mrd. € Umsatz, ca. 160.000 Mitarbeiter

Zertifikate: QMS ISO 9001, EMS ISO 14001, ITSM ISO 20000,

ISMS ISO 27001, EnMS ISO 50001



Basisleistungen

- Beidseitig gleiches Verständnis zu Basisleistungen schaffen.
- Auch für Basisleistungen die entsprechenden Vereinbarung festhalten.
- Erwartungen klar aussprechen.
- Möglichkeiten eindeutig rückmelden.

Zulieferer / Partner

- Partnerschaften sind üblich und oft / meist notwendig.
- Verantwortung klären.
- Umgang klären.
- Vereinbarungen festhalten.

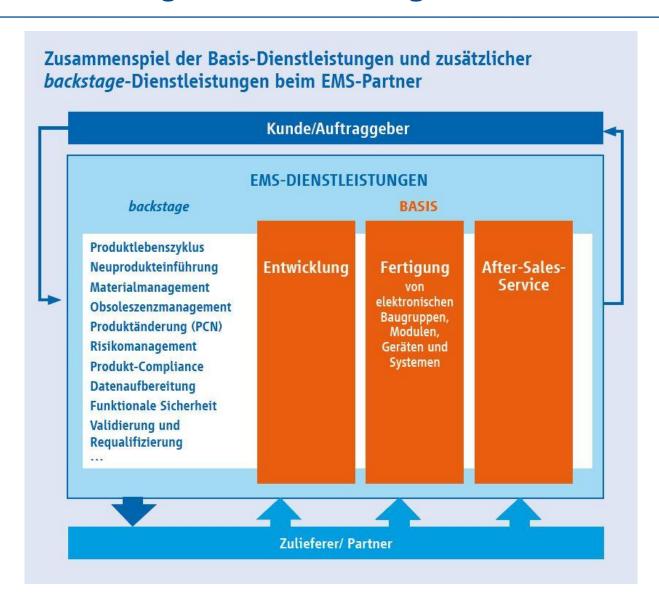
Produktlebenszyklus

Backstage

Materialmanagement

Obsoleszenzmanagement

Funktionale Sicherheit


Produktänderung

Requalifizierung

Produkt-Compliance

EMS backstage

Neben den klassischen EMS-Basis-Dienstleistungen, den drei Säulen "Entwicklung, Produktion und After-Sales-Service", sind eine Menge Prozesse im Hintergrund – backstage – zu leisten und zu organisieren. Zwischen Kunden und EMS-Partnern ist die Abstimmung "Wer hat was zu liefern?" notwendig und individuell zu beauftragen. Dadurch heftige sind Auswirkungen, die durch fehlende oder von beiden Seiten asynchron geleistete Dienste entstehen, vermeidbar. Die Verantwortlichkeit ist geregelt zugeteilt. Die Produktverantwortlichkeit bleibt jedoch immer beim "In-Verkehr-Bringer" (IP-Owner).

Product ComplianceGustl Keller, Eltroplan

Kurzportrait: Eltroplan Group

Branche: EMS-Anbieter

Dienstleistungen: Entwicklung, Design, Produktion und Test sowie

Logistik- und After Sales Services

Kunden: Automobil-, Sicherheits-, Luftfahrt-, Medizin-, Industrie-, Mess- und

Regeltechnik

Historie: 1978: als PCB-Layout-Dienstleister gegründet, bald auch Prototypenbau

und Bestückung

2001: Neubau 1/Entwicklung zum EMS-Anbieter

2009: Neubau 2/Spez. Robustness- u. Testprozesse

2015: Erwerb der ML Industrieelektronik GmbH

2016: Eltroplan Group als Systemlieferant

2017: ARISTOS GmbH: Joint Venture von Eltroplan Engineering

GmbH, PLC2 Design GmbH und Kaiser Ingenieurbüro GmbH

Standorte: Endingen a. K. und Stockach

Kennzahlen: ca. 12 Mio. € Umsatz p.a./ca. 70 Mitarbeiter

Zertifikate: ISO 9001, ISO/TS 16949, EN 9100

- Compliance = Erfüllen aller legalen Vorgaben inkl. EU-Richtlinien, u.a. bzgl.:
 - Arbeits- und Produktsicherheit
 - Ressourcen- und Umweltschonung
 - Antikorruptionsmaßnahmen usw.
- Eigentlich eine Selbstverständlichkeit, aber schwierig
- Sicherstellung mittels Managementsystem
- EMS-Unternehmen:
 - Compliance zusätzlich auch zu Kunden-/Branchenforderungen
 - nur beschränkt Einfluss auf Eigenschaften und Umweltauswirkungen der Produkte, denn diese müssen nach Kundenvorgaben realisiert werden

EMS-Unternehmen und Product-Compliance:

- Forderung: Prozesse, insbesondere die Produktion unter Berücksichtigung aller legalen Anforderungen sowie möglichst ressourcen- und umweltschonend
- Zur Herstellung der Produkte und bei den damit verbundenen Prozessen werden verwendet:
 - die in den von den Kunden erstellten/autorisierten Stücklisten aufgeführten Komponenten und Materialien
 - meistens nur Stoffe, Gemische, Zubereitungen usw., ohne besondere Verarbeitungsund Anwendungsbeschränkungen sowie Informationspflichten
- EMS-Unternehmen stellen keine eigenen Stoffe, Gemische, Zubereitungen usw. her.
- ==> Mit dem EMS-Geschäft sind in der Regel keine (besonderen) Gefährdungen im Bereich Umwelt-, Arbeits- und Gesundheitsschutz verbunden.

Basis für Product-Compliance:

- allgemeine gesetzliche und behördliche (legale) Anforderungen
- branchen- und produktspezifische gesetzliche und behördliche Anforderungen (wie z.B. die EU-Richtlinien ELV, RoHS, REACh)
- kundenspezifische Anforderungen (wie z.B. zu Konfliktmineralien)

Compliance-Managementsystem:

- Anforderungen laufend ermitteln/Änderungen verfolgen
- Relevanz bewerten
- Ggf. Erfassung und Dokumentation (z.B. in Übersichtsliste/Tabelle)
- Anforderungen systematisch umsetzen
- Compliance-Maßnahmen, z.B.:
 - Compliance-Politik formulieren und verwirklichen inkl. Überwachung
 - regelmäßige Schulung aller Mitarbeitenden und Führungskräfte
 - regelmäßiger Austausch des Personals im Einkauf
 - regelmäßige Compliance-Reviews und -Audits

Compliance-Managementsystem in der Praxis:

- Ermittlung der Anforderungen mittels:
 - spezieller Websites (www.bgbl.de, www.eur-lex.europa.eu, www.ce-richtlinien.eu)
 - IHK-Informationen
 - Informationen von Fachverbänden (z.B. FED, ZVEI, WVIB)
 - externer Experten (z.B. Arbeitssicherheitsfachkraft, Steuerbüro)
 - Fachmedien (z.B. PLUS, CE-Newsletter)
 - Nachfragen bei Kunden
- Umsetzung der Anforderungen:
 - Beschaffung der von Fachverbänden herausgegebenen Leitfäden
 - Geschäftsrelevanz prüfen und bewerten inkl. Chancen und Risiken
 - Management informieren und einbinden
 - Generelle Maßnahmen zur Umsetzung festlegen
 - Compliance als Bestandteil in das operative Geschäft integrieren

Maßnahmen im operativen Geschäft:

- Nachfrage beim Kunden, ob für das beauftragte Produkt sowie dessen Anwendung spezifische Vorgaben existieren
- Ergebnis dokumentieren (z.B. im Angebot bzw. in der Auftragsbestätigung)
- Alle spezifischen legalen Vorgaben sowie die entsprechenden Kundenvorgaben:
 - in die Eingaben für die Produktentwicklung aufnehmen
 - bei der Entwicklung berücksichtigen und umsetzen
 - im Zeichnungssatz (als Entwicklungsergebnis) darlegen
 - in die Produktstammdaten im ERP-System aufnehmen
 - von der Arbeitsvorbereitung im Arbeitsplan (CP) berücksichtigen
 - bei der Beschaffung von Materialien und Dienstleistungen berücksichtigen
 - (entsprechend Arbeitsplan) von der Produktion umsetzen inkl. Endprüfung
- Kunde einbeziehen, indem für alles eine Freigabe eingeholt wird.

Maßnahmen im operativen Geschäft - Ergänzung:

- Spezielle Wareneingangsprüfungen auf Stoffe mit Anwendungsbeschränkungen
- Compliance-Vereinbarungen mit Lieferanten (z.B. in Form von QSV)
- Lieferanten-Compliance-Audits
- Beschaffung von Komponenten und Stoffen, Gemischen, Zubereitungen usw. nur aus offizieller Lieferkette (Hersteller oder von diesen autorisierte Lieferanten)
- Liefervereinbarungen für Zeichnungsteile mit Informationspflicht gemäß REACh Titel IV
- Ausschließliche Beschaffung von Stoffen, Gemischen, Zubereitungen usw., für die ein aktuelles Sicherheitsdatenblatt gemäß REACh Artikel 31 bzw. entsprechende Informationen gemäß REACh Artikel 32 vorliegen

Maßnahmen im operativen Geschäft – Ergänzung Fortsetzung:

- Registrierung und Überwachung der bei der Produktion verwendeten Stoffe inkl. ihrer Anwendungen mit interner Liste/Tabelle
- Verwendung der Stoffe in der Produktion gemäß den Hersteller-/Lieferanten-Vorgaben und Sicherheitsdatenblatt
- Hinweise in allen Bestellungen (Standardtext), dass davon ausgegangen wird, dass die Lieferanten die in den EU-Richtlinien geforderten Informationspflichten ohne besondere Aufforderungen in vollem Umfang erfüllen.
- Erfassung der von Lieferanten erhaltenen Informationen über Risiken und Beschränkungen der in Produkten enthaltenen Stoffe in den Artikelstammdaten und Weiterleitung dieser Informationen gemäß REACh Artikel 33 an die Kunden

Aufgabe/Tätigkeit	Ziel/Ergebnis	EMS	Kunde
Legale Anforderungen	Relevante EU-Richtlinien: REACH, RoHS, ELV		
Zusätzliche Kundenanforderungen	Konfliktmineralien		
Angebot erstellen	Mit Darlegung der gesamten Compliance-Anforderungen sowie der Verantwortlichkeiten und Kompetenzen inkl. Freigabeprozeduren		Bestellung
Produktentwicklung und -design	Passende AVT-Auswahl und Darlegung im Zeichnungssatz und Stücklisten		Freigabe
Prozessentwicklung und NPI	Passender Kontrollplan mit Überwachungen und Prüfungen		Freigabe
Qualifikation und Überwachung von Zulieferern	Vereinbarung über Information/ Deklaration kritischer Stoffe, PCN, Lieferantenaudits, Zertifikate		Freigabe
Logistik	Einkauf mit speziellem Bestelltext, erweiterte WEP, spezielle Materialkennzeichnung		Freigabe
Produktion	Gemäß Kontrollplan mit Material-, Prozess- und Prüfdatenerfassung		Bestellung
QM	Produkt- und Prozessaudits, Konformitätserklärungen		Bestellung
Support	Management externer Prüfungen und Zertifizierungen, OM, PLM		Bestellung

Validierung und Requalifizierung Dr. Georg Loisel, Melecs EWS

Kurzportrait: Melecs EWS GmbH

Branche: EMS-Anbieter

Dienstleistungen: Produktentwicklung, Validierung,

Industrialisierung, Produktion, Logistik

Business Units: Automotive, Lighting, Weiße Ware, Industrie

■ Historie: 2009: Management Buy Out und Übernahme von Siemens Werken,

Beginn Aufbau R&D Bereich

2011: Installation Produktionswerk in Györ/Ungarn

2014: Gründung Tochterunternehmen in Wuxi/China

2015: Übernahme Produktionsstandort in Lenzing/Österreich

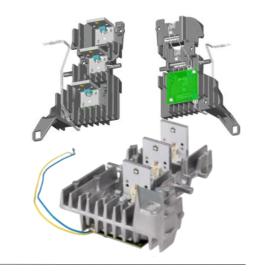
2017: Eröffnung Vertriebsbüro Detroit/USA

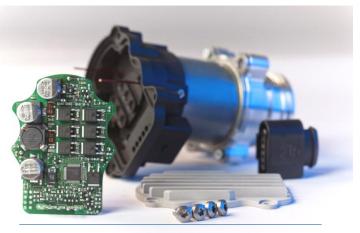
Standorte: Österreich: Wien, Siegendorf, Lenzing Ungarn: Györ

China: Wuxi USA: Auburn Hills/Detroit

Kennzahlen: 227 Mio. € Umsatz p.a. ca. 1100 Mitarbeiter

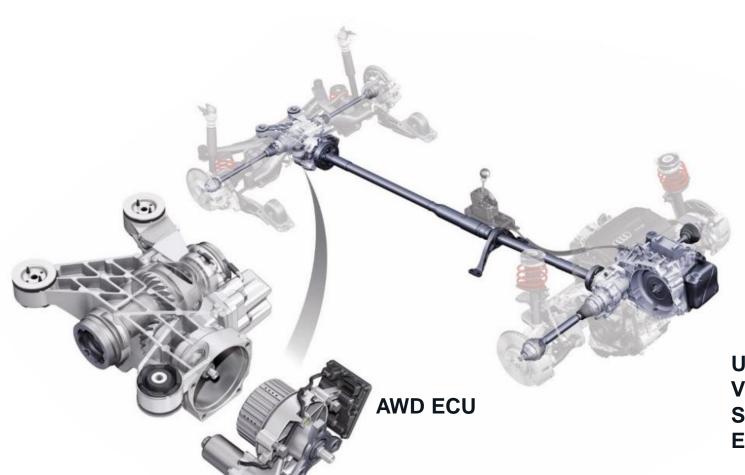
Zertifikate: ISO 9001, ISO/TS 16949, ISO 14001, ISO 13485


Melecs Produktportfolio



AWD Control Units (ECUs)

LED Lighting Units


Pump Control Units

Electronics for washing machines, dish washers, electric stoves, etc..

Validierung und Requalifizierung Produktanforderungen

Umgebungstemp.: -40 +105 °C

Vibration: 30g 5 ... 2000Hz

Schutzklasse: IP6K9

Einflüsse: Salznebel, Staub,

Eiswasser...

Validierung und Requalifizierung Produktanforderungen

Umgebungstemp.: -40 +140 °C

Vibration: 12g 5 ... 2000Hz

Schutzklasse: IP6K9

Einflüsse: Salznebel, Staub,

Eiswasser...

AWD ECU

Validierung und Requalifizierung Aufgabenstellung

Validierung ist ein wesentliches Element bei der Entwicklung von neuen Produkten

Ziel: Erfüllung der Produktspezifikation und mitgeltender Standards = > Compliance

Inhalte:

- Umwelttests
- Elektrische Tests
- Elektromagnetische Verträglichkeit.

Jährliche Requalifizierung sichert die Qualität in der Serienfertigung ab

Es werden verkürzte Testzyklen der Umwelttests durchgeführt

In der Automotive Industrie ist das von den OEM's vorgeschrieben.

Validierung und Requalifizierung Ablauf

Die Durchführung erfordert Kompetenzen und Ressourcen für folgende

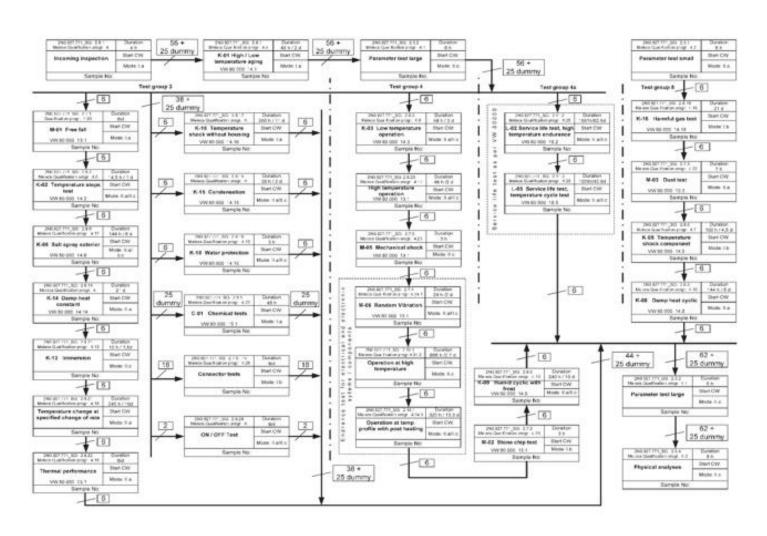
- Bewertung der allgemeinen und der vom Kunden vorgegebenen Standards
- Erstellung von Testspezifikationen => Kundenfreigabe erforderlich
- Bereitstellung des Testequipments
- Testdurchführung
- Analyse der Ergebnisse und Erstellung von Testberichten
- Durchführung von Optimierungen am Produkt

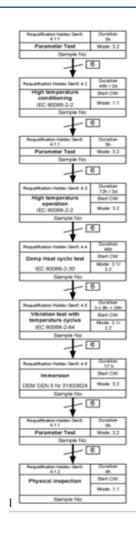
Validierung Requalifizierung Testspezifikationen

Die Testspezifikationen werden auf Basis folgender Inputs der Kunden erstellt:

- Standards der OEM's
- Lastprofile
- ISO oder DIN Normen

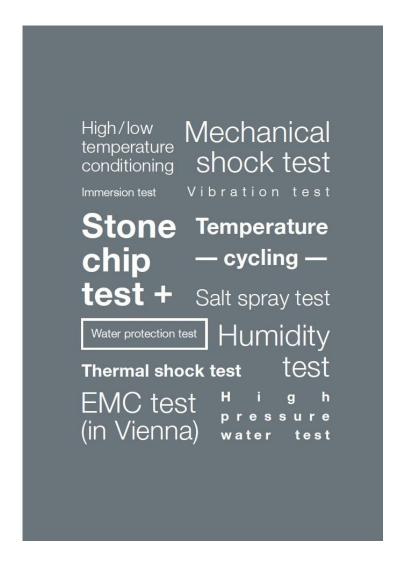
Wesentlich ist die frühzeitige Abstimmung der Spezifikationen mit dem Gesamtsystem des Kunden und OEM's


Typische Testdurchführungszeiten:


Validierung: 3 - 6 Monate

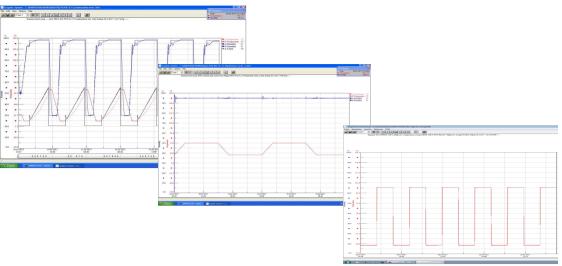
Requalifizierung: 2-7 Wochen

Validierung Requalifizierung Spezifikationen Umwelttests



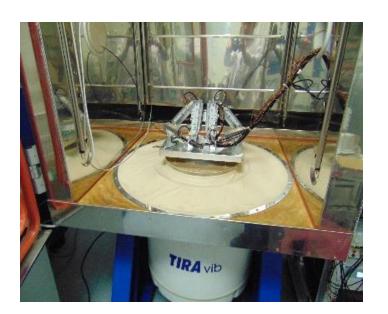
Validierung

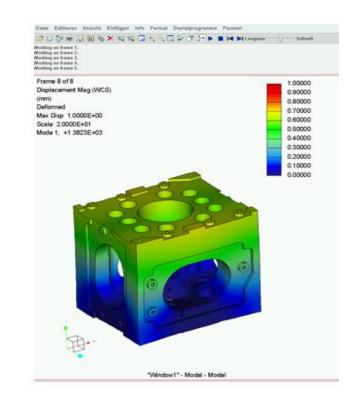
Requalifizierung



Klimaschränke Schockschränke

-70 +220 °C 10 - 98% RH Schockzeit < 10 Sec

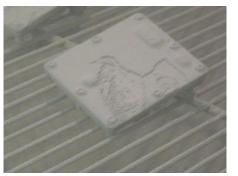



Wassertests Tauchtests versch. Schutzklassen

Salzsprühnebeltests 80°C 100% RH

Vibrationstests: Sinus, Random, Schock Temperatur und Feuchte Zyklen

Simulation Aufspannvorrichtung

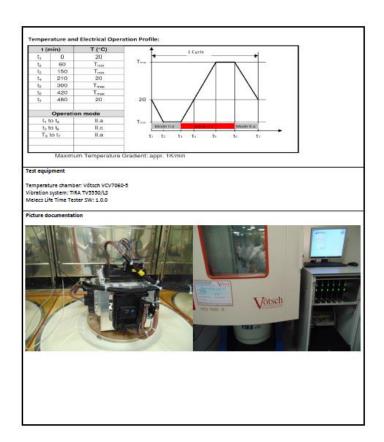


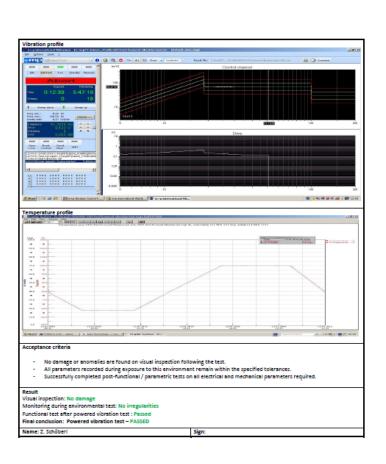
Steinschlagtest ISO 20567

Staubtest

Validierung Requalifizierung Testdurchführung

EMV Prüfung




Testsystem

Validierung Requalifizierung Testberichte

	MELECS EWS GmbH	т.	act Papart	Date: 22.01.2016 Responsible: Z. Schöberl
melecs	Engineering Test Center Wien - Győr	Test Report		Report nr.: METC-160522
General information			Test sequence	
Customer: GKN driveline - FORD Project: Ford C346RS			Product Validation	
Project phase: 2 nd PV Test specification: Ford C346RS PV ENV-Qualification			Preceding test: Functional test	
	d_C346RS_PV_ENV-Qualificat ition: Powered vibration test		Next test: Mechanical shock	
	SE Corporate Standard: section		Next test: Mechanical snock	
	-		Test started:	Test finished:
			06.01.2016	12.01.2016
DUT:			Serial nr:	
Description: GKN Ford Quantity: 6 pcs	I C346RS ECU		LEG1 88N01PG 88N01PI 88N010B 88N01NS 88N01NS 88N01NN 88N01NN	
Test description / Det	tails			
Total Test Duration			3 x 8 h = 24 h	
Test Cycle Durat	tion			
_				
Test Duration fo	r each spatial axis		8 h	
Test Duration fo Maximum Tempe	erature (T _{max})		+105 °C	
Test Duration for Maximum Tempe Minimum Tempe	erature (T _{max}) erature (T _{min})		+105 °C -40 °C	
Test Duration for Maximum Tempe Minimum Tempe DUT Test Position	erature (T _{max}) erature (T _{min}) on/Orientation	s	+105 °C -40 °C See section 2.8 – Figure 5	
Test Duration for Maximum Tempe Minimum Tempe	erature (T _{max}) erature (T _{min}) on/Orientation	S	+105 °C -40 °C	
Test Duration to Maximum Tempe Minimum Tempe DUT Test Positio Operation/Monit	erature (T _{max}) erature (T _{min}) on/Orientation		+105 °C -40 °C See section 2.8 – Figure 5	
Test Duration to Maximum Tempe Minimum Tempe DUT Test Positio Operation/Monit	erature (T _{max}) erature (T _{min}) on/Orientation oring Mode		+105 °C -40 °C See section 2.8 – Figure 5	
Test Duration fo Maximum Tempe Minimum Tempe DUT Test Positio Operation/Monit	erature (T _{max}) erature (T _{min}) on/Orientation oring Mode	ere): Acceleration	+105 °C -40 °C See section 2.8 – Figure 5	
Test Duration fo Maximum Tempe Minimum Tempe DUT Test Positio Operation/Monit Vibration profile for Frequency	erature (T _{max}) erature (T _{min}) on/Orientation oring Mode	ere): Acceleration	+105 °C -40 °C See section 2.8 – Figure 5 II.a / II.o	
Test Duration to Maximum Tempi Minimum Tempi DUT Test Positic Operation/Monit Vibration profile for Frequency 5 – 18,6 Hz	erature (T _{max}) erature (T _{min}) on/Orientation oring Mode	ere): Acceleration 10 mm p-p disp	+105 °C -40 °C see section 2.8 – Figure 5 II.a / II.o	

Dokumentation der Testdurchführung und Ergebnisse

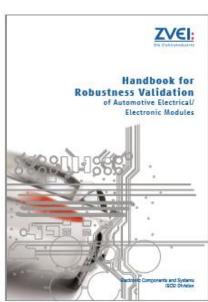
Validierung Requalifizierung Projektabwicklung

• Ein vertraglich vereinbarter Leistungsumfang ist Voraussetzung für eine erfolgreiche Umsetzung in ihrem Projekt

- Validierungen werden im Rahmen der Produktentwicklung angeboten
 - Designvalidierung mit B Mustern
 - Produktvalidierung mit C Mustern

 Die Verrechnung der j\u00e4hrlichen Requalifizierungen ist aufwandsbezogen zu vereinbaren

Validierung Requalifizierung Kundennutzen



Produktentwicklung mit integrierter Validierung bietet folgende Vorteile

- Verkürzte Entwicklungsdurchlaufzeiten und damit der Time to Market
- Weniger Schnittstellen und Risiken

In der Serienfertigung gewährleisten wir, dass ihre Produkte kontinuierlich die Qualitätsanforderungen und Standards erfüllen.

Grundlagen und Methoden zur robusten Produktentwicklung und Validierung werden im ZVEI Robustness Validation Handbuch dargestellt: https://www.zvei.org/en/subjects/mobility/robustness-validation-general/

Datenaufbereitung

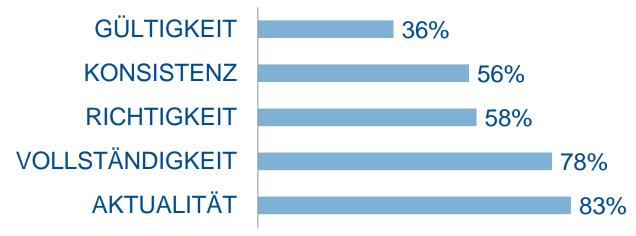
Integration von externen Komponentendaten in die Systemlandschaft von Zollner

Mathias Marchner, Zollner Elektronik

Agenda:

- 1. Kurzportrait
- 2. Datenqualität
- 3. Alte Welt
- 4. Neue Welt
- 5. Vorteile
- 6. Zusammenfassung

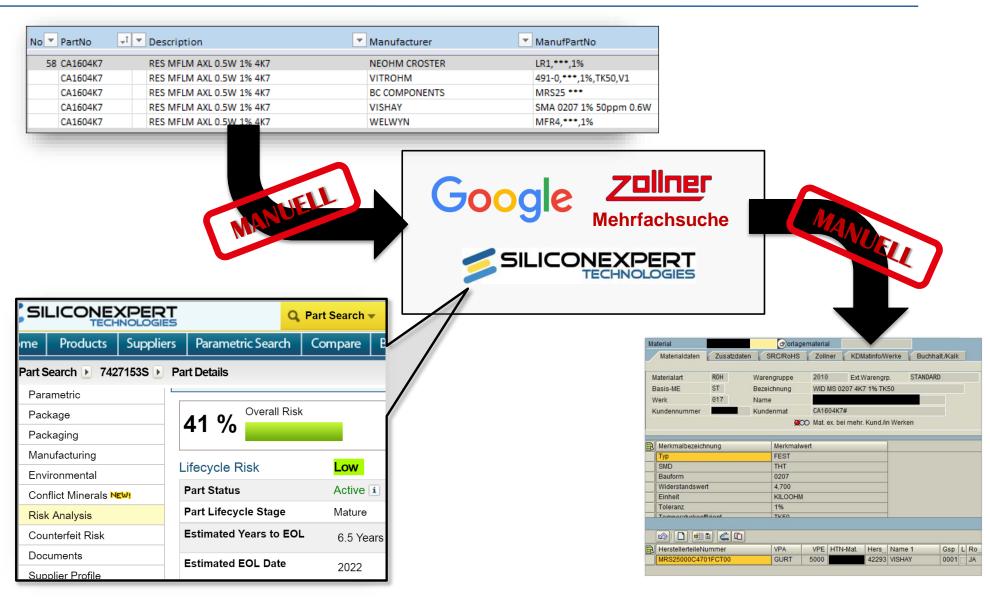
Kurzportrait: Zollner Elektronik AG



- Branche: EMS-Anbieter
- Dienstleistungen:
 Komplexe mechatronische Systeme,
 von der Entwicklung bis zum After Sales Service.
- Historie:
 1965 Gründung des Unternehmens durch Manfred Zollner
 2015 50-jähriges Firmenjubiläum
- Standorte: insgesamt 18 Standorte in Deutschland, Ungarn, Rumänien, China, Tunesien, den USA, der Schweiz, Costa Rica und Hong Kong
- Kennzahlen: 1200 Mio. € Umsatz, >10.500 Mitarbeiter (Stand: 11.09.2017)
- Zertifizierungen:
 ISO 9001, ISO 14001, ISO/TS 16949, OHRIS, ISO 13485,
 EN 9100, ISO/IEC 27001, IRIS, ISO 50001

Datenqualität

 Hauptproblem der Datenqualität von Produktdaten (49 Unternehmen aus zwölf Ländern und acht Branchen)



(PWC "Hidden treasure", Seite 5, Fig. 5)

- Ursachen:
 - mangeInde Kommunikation
 - Fehlen unternehmensweiter Standards
 - zu wenige Ressourcen für ein konsistentes Datenqualitätsmanagement
 - menschliche Fehler
 - -> Datenqualität der Kundendaten

Alte Welt

Probleme alte Welt

- Hoher manueller Pflegeaufwand
- Fehlerhafte Komponentendaten
- Hoher personeller bzw. zeitlicher Aufwand
- Manuelle Aktualisierung von Komponentendaten
- Redundante Datenhaltung
- Insellösungen werden erstellt
- Komponentendatenbanken sind auf Abteilung zugeschnitten
- Kein Zollner Standard bezüglich Datenstruktur (beispielsweise bei Klassifizierung und technischer Parameter)

IEC (Integrated Engineering Content)

Life-Cycle Daten

Aktuelles Datenblatt

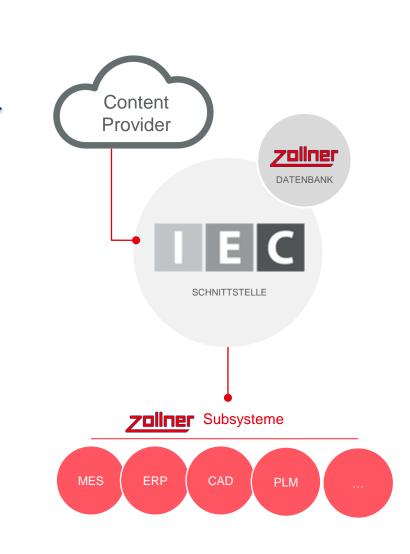
PCN Übersicht

Technische Parameter

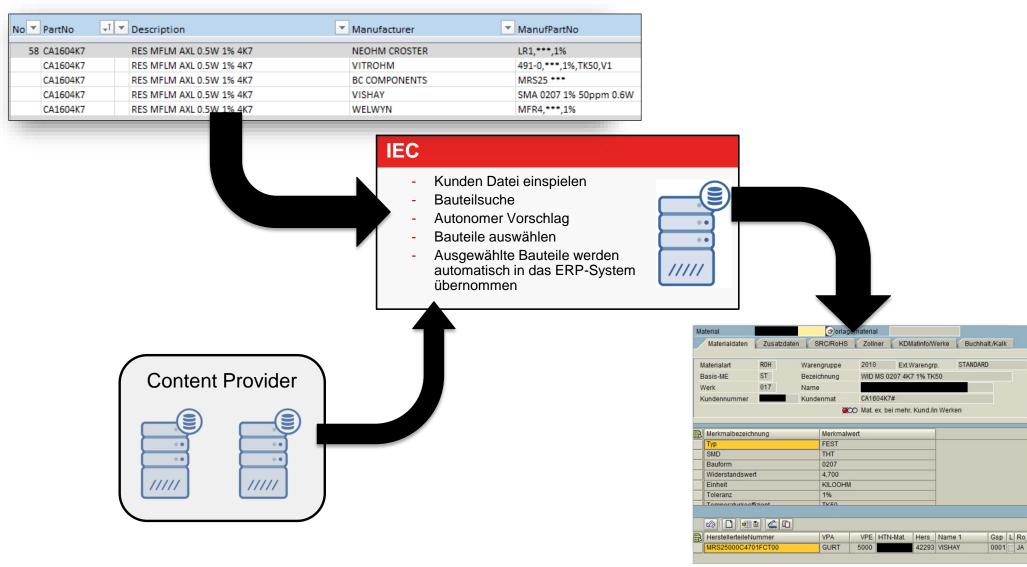
Bauform- & Verpackungsdaten

Compliance Daten

(REACH, RoHs, Conflict Minerals)


Chemische Zusammensetzung

Risikodaten



Normen & Qualifizierungen (AECQ, ELV, PPAP ...)

Neue Welt

Vorteile

Alternative Bauteilsuche

Historische Daten

Zugriff für jeden Mitarbeiter

Einfache & schnelle Bedienung

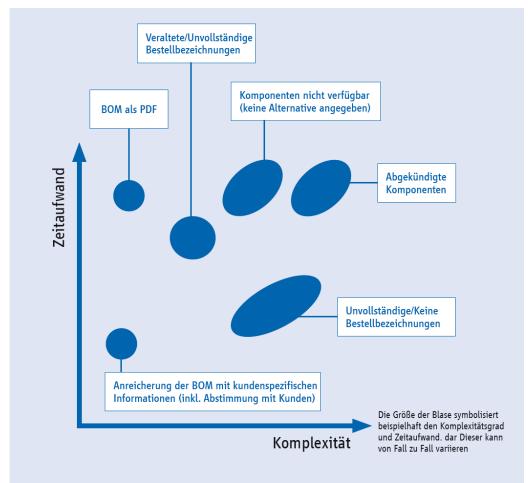
Volltextsuche

Immer aktuelle Daten

ERP Integration in IEC

Reduzierung der manuellen Pflege

Automatische Änderungs-benachrichtigungen

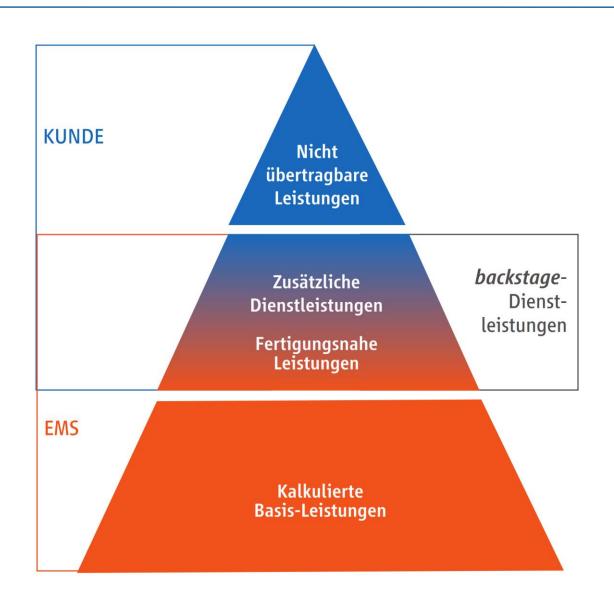

Erstellung von Reports

Zusammenfassung

 Je schlechter die Datenqualität, desto h\u00f6her der Aufwand f\u00fcr die Datenaufbereitung

- Unvollständigkeit
- Form der Daten
- Veraltet
- Fehlerhaft
- Weitere Leistungen
 - Bauteilalternativen
 - Änderungsbenachrichtgungen (PxN)
 - Reporterstelleung (Lifecycle, Reach, RoHS…)
- Zusatzleistungen die über den Standard hinausgehen

Dienstleistungen backstage – Mehrwert unter dem Radar



Fachverband PCB and Electronic Systems

Dientsleistungen backstage – Mehrwert unter dem Radar

Services

IFTEST

- swiss quality electronics

Ihlemann AG

